Mansour, Islam und Fischer, Georg und Hänsch, Ronny und Hajnsek, Irena (2025) Hybrid AI-Physical Modeling for Penetration Bias Correction in X-band InSAR DEMs: A Greenland Case Study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2025-06-11 - 2025-06-15, Nashville, United States. (eingereichter Beitrag)
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Digital elevation models derived from Interferometric Synthetic Aperture Radar (InSAR) data over glacial and snow-covered regions often exhibit systematic elevation errors, commonly termed "penetration bias." We leverage existing physics-based models and propose an integrated correction framework that combines parametric physical modeling with machine learning. We evaluate the approach across three distinct training scenarios — each defined by a different set of acquisition parameters — to assess overall performance and the model's ability to generalize. Our experiments on Greenland's ice sheet using TanDEM-X data show that the proposed hybrid model corrections significantly reduce the mean and standard deviation of DEM errors compared to a purely physical modeling baseline. The hybrid framework also achieves significantly improved generalization than a pure ML approach when trained on data with limited diversity in acquisition parameters.\footnote{The source code for this work will be made available upon acceptance of the manuscript.
| elib-URL des Eintrags: | https://elib.dlr.de/213215/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Hybrid AI-Physical Modeling for Penetration Bias Correction in X-band InSAR DEMs: A Greenland Case Study | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | März 2025 | ||||||||||||||||||||
| Erschienen in: | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||||||
| Stichwörter: | Hybrid Modeling; InSAR; Greenland | ||||||||||||||||||||
| Veranstaltungstitel: | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops | ||||||||||||||||||||
| Veranstaltungsort: | Nashville, United States | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 11 Juni 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 15 Juni 2025 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - TerraSAR/TanDEM | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||
| Hinterlegt von: | Mansour, Islam | ||||||||||||||||||||
| Hinterlegt am: | 18 Mär 2025 13:16 | ||||||||||||||||||||
| Letzte Änderung: | 18 Mär 2025 13:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags