Lee, Jinsil und Dela Cruz, Mel Vincent und Sturm, Ralf (2025) Quantifying integrated safety risk in highly automated vehicles: A probabilistic approach to perception sensor uncertainty. Transportation Engineering. Elsevier. doi: 10.1016/j.treng.2025.100310. ISSN 2666-691X.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Kurzfassung
Highly automated vehicles (AVs) rely on sensor data for target tracking and maintaining a safe separation distance during safety-critical operations such as forward collision avoidance. However, the inherent uncertainty in perception sensor measurements can lead to inaccurate tracking, which poses challenges for ensuring passenger safety. Method: This study proposes a method to quantify integrated safety risk using a probabilistic approach, incorporating various scenarios of perception sensor uncertainty and linking them to corresponding collision risks and subsequent serious passenger injury risks. A novel approach in this method involves subdividing the risk for each distance to the target, as defined by a perception uncertainty model. These risks are then integrated to compute the total safety of the ego-vehicle’s passengers. Results and conclusions: By considering both target presence and absence hypotheses, the algorithm innovatively addresses risks posed by potentially undetected targets, significantly enhancing user protection and advancing AV safety. Practical Applications: The developed algorithm contributes to the integrated safety of AVs by offering guidance on regulating a minimum separation distance or maximum vehicle speed for a given vehicle sensor set, or specifying the sensor specifications that should be equipped on a vehicle. This approach aims to enhance the reliability and safety of automated driving systems, ensuring a higher standard of passenger safety and fostering trust in automated vehicle technologies.
elib-URL des Eintrags: | https://elib.dlr.de/213206/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Quantifying integrated safety risk in highly automated vehicles: A probabilistic approach to perception sensor uncertainty | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 Februar 2025 | ||||||||||||||||
Erschienen in: | Transportation Engineering | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1016/j.treng.2025.100310 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 2666-691X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Autonomous vehicle, Integrated safety, Sensor uncertainty, Probabilistic, Perception | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement | ||||||||||||||||
Standort: | Stuttgart | ||||||||||||||||
Institute & Einrichtungen: | Institut für Fahrzeugkonzepte > Fahrzeugarchitekturen und Leichtbaukonzepte | ||||||||||||||||
Hinterlegt von: | Sturm, Ralf | ||||||||||||||||
Hinterlegt am: | 18 Mär 2025 15:01 | ||||||||||||||||
Letzte Änderung: | 18 Mär 2025 15:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags