elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Quantifying integrated safety risk in highly automated vehicles: A probabilistic approach to perception sensor uncertainty

Lee, Jinsil und Dela Cruz, Mel Vincent und Sturm, Ralf (2025) Quantifying integrated safety risk in highly automated vehicles: A probabilistic approach to perception sensor uncertainty. Transportation Engineering. Elsevier. doi: 10.1016/j.treng.2025.100310. ISSN 2666-691X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Kurzfassung

Highly automated vehicles (AVs) rely on sensor data for target tracking and maintaining a safe separation distance during safety-critical operations such as forward collision avoidance. However, the inherent uncertainty in perception sensor measurements can lead to inaccurate tracking, which poses challenges for ensuring passenger safety. Method: This study proposes a method to quantify integrated safety risk using a probabilistic approach, incorporating various scenarios of perception sensor uncertainty and linking them to corresponding collision risks and subsequent serious passenger injury risks. A novel approach in this method involves subdividing the risk for each distance to the target, as defined by a perception uncertainty model. These risks are then integrated to compute the total safety of the ego-vehicle’s passengers. Results and conclusions: By considering both target presence and absence hypotheses, the algorithm innovatively addresses risks posed by potentially undetected targets, significantly enhancing user protection and advancing AV safety. Practical Applications: The developed algorithm contributes to the integrated safety of AVs by offering guidance on regulating a minimum separation distance or maximum vehicle speed for a given vehicle sensor set, or specifying the sensor specifications that should be equipped on a vehicle. This approach aims to enhance the reliability and safety of automated driving systems, ensuring a higher standard of passenger safety and fostering trust in automated vehicle technologies.

elib-URL des Eintrags:https://elib.dlr.de/213206/
Dokumentart:Zeitschriftenbeitrag
Titel:Quantifying integrated safety risk in highly automated vehicles: A probabilistic approach to perception sensor uncertainty
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lee, JinsilJinsil.Lee (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dela Cruz, Mel Vincentmel.delacruz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sturm, RalfRalf.Sturm (at) dlr.dehttps://orcid.org/0000-0003-0259-5127180327440
Datum:20 Februar 2025
Erschienen in:Transportation Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1016/j.treng.2025.100310
Verlag:Elsevier
ISSN:2666-691X
Status:veröffentlicht
Stichwörter:Autonomous vehicle, Integrated safety, Sensor uncertainty, Probabilistic, Perception
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement
Standort: Stuttgart
Institute & Einrichtungen:Institut für Fahrzeugkonzepte > Fahrzeugarchitekturen und Leichtbaukonzepte
Hinterlegt von: Sturm, Ralf
Hinterlegt am:18 Mär 2025 15:01
Letzte Änderung:18 Mär 2025 15:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.