Klawonn, Axel und Lanser, Martin und Mager, Lucas und Rege, Ameya Govind (2025) Computational homogenization for aerogel-like polydisperse open-porous materials using neural network-based surrogate models on the microscale. Computational Mechanics. Springer. doi: 10.1007/s00466-024-02588-9. ISSN 0178-7675.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://link.springer.com/article/10.1007/s00466-024-02588-9
Kurzfassung
The morphology of nanostructured materials exhibiting a polydisperse porous space, such as aerogels, is very open porous and fine grained. Therefore, a simulation of the deformation of a large aerogel structure resolving the nanostructure would be extremely expensive. Thus, multi-scale or homogenization approaches have to be considered. Here, a computational scale bridging approach based on the FE2 method is suggested, where the macroscopic scale is discretized using finite elements while the microstructure of the open-porous material is resolved as a network of Euler–Bernoulli beams. Here, the beam frame based RVEs (representative volume elements) have pores whose size distribution follows the measured values for a specific material. This is a well-known approach to model aerogel structures. For the computational homogenization, an approach to average the first Piola–Kirchhoff stresses in a beam frame by neglecting rotational moments is suggested. To further overcome the computationally most expensive part in the homogenization method, that is, solving the RVEs and averaging their stress fields, a surrogate model is introduced based on neural networks. The network’s input is the localized deformation gradient on the macroscopic scale and its output is the averaged stress for the specific material. It is trained on data generated by the beam frame based approach. The effiency and robustness of both homogenization approaches is shown numerically, the approximation properties of the surrogate model is verified for different macroscopic problems and discretizations. Different (Quasi-)Newton solvers are considered on the macroscopic scale and compared with respect to their convergence properties.
elib-URL des Eintrags: | https://elib.dlr.de/213127/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Computational homogenization for aerogel-like polydisperse open-porous materials using neural network-based surrogate models on the microscale | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2025 | ||||||||||||||||||||
Erschienen in: | Computational Mechanics | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1007/s00466-024-02588-9 | ||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||
ISSN: | 0178-7675 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Open-porous material, Polydispersity, Aerogel, Homogenization, FE2, Finite elements, Beam frame, Neural networks, Machine learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Aerogele und Aerogelverbundwerkstoffe | ||||||||||||||||||||
Hinterlegt von: | Rege, Dr. Ameya Govind | ||||||||||||||||||||
Hinterlegt am: | 12 Mär 2025 10:51 | ||||||||||||||||||||
Letzte Änderung: | 12 Mär 2025 10:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags