elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Computational homogenization for aerogel-like polydisperse open-porous materials using neural network-based surrogate models on the microscale

Klawonn, Axel und Lanser, Martin und Mager, Lucas und Rege, Ameya Govind (2025) Computational homogenization for aerogel-like polydisperse open-porous materials using neural network-based surrogate models on the microscale. Computational Mechanics. Springer. doi: 10.1007/s00466-024-02588-9. ISSN 0178-7675.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://link.springer.com/article/10.1007/s00466-024-02588-9

Kurzfassung

The morphology of nanostructured materials exhibiting a polydisperse porous space, such as aerogels, is very open porous and fine grained. Therefore, a simulation of the deformation of a large aerogel structure resolving the nanostructure would be extremely expensive. Thus, multi-scale or homogenization approaches have to be considered. Here, a computational scale bridging approach based on the FE2 method is suggested, where the macroscopic scale is discretized using finite elements while the microstructure of the open-porous material is resolved as a network of Euler–Bernoulli beams. Here, the beam frame based RVEs (representative volume elements) have pores whose size distribution follows the measured values for a specific material. This is a well-known approach to model aerogel structures. For the computational homogenization, an approach to average the first Piola–Kirchhoff stresses in a beam frame by neglecting rotational moments is suggested. To further overcome the computationally most expensive part in the homogenization method, that is, solving the RVEs and averaging their stress fields, a surrogate model is introduced based on neural networks. The network’s input is the localized deformation gradient on the macroscopic scale and its output is the averaged stress for the specific material. It is trained on data generated by the beam frame based approach. The effiency and robustness of both homogenization approaches is shown numerically, the approximation properties of the surrogate model is verified for different macroscopic problems and discretizations. Different (Quasi-)Newton solvers are considered on the macroscopic scale and compared with respect to their convergence properties.

elib-URL des Eintrags:https://elib.dlr.de/213127/
Dokumentart:Zeitschriftenbeitrag
Titel:Computational homogenization for aerogel-like polydisperse open-porous materials using neural network-based surrogate models on the microscale
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Klawonn, Axelaxel.klawonn (at) uni-koeln.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lanser, Martinmartin.lanser (at) uni-koeln.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mager, Lucaslucas.mager (at) uni-koeln.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rege, Ameya GovindAmeya.Rege (at) dlr.dehttps://orcid.org/0000-0001-9564-5482NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Computational Mechanics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s00466-024-02588-9
Verlag:Springer
ISSN:0178-7675
Status:veröffentlicht
Stichwörter:Open-porous material, Polydispersity, Aerogel, Homogenization, FE2, Finite elements, Beam frame, Neural networks, Machine learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Aerogele und Aerogelverbundwerkstoffe
Hinterlegt von: Rege, Dr. Ameya Govind
Hinterlegt am:12 Mär 2025 10:51
Letzte Änderung:12 Mär 2025 10:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.