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Abstract
The morphology of nanostructured materials exhibiting a polydisperse porous space, such as aerogels, is very open porous
and fine grained. Therefore, a simulation of the deformation of a large aerogel structure resolving the nanostructure would
be extremely expensive. Thus, multi-scale or homogenization approaches have to be considered. Here, a computational scale
bridging approach based on the FE2 method is suggested, where the macroscopic scale is discretized using finite elements
while the microstructure of the open-porous material is resolved as a network of Euler–Bernoulli beams. Here, the beam frame
based RVEs (representative volume elements) have pores whose size distribution follows the measured values for a specific
material. This is a well-known approach to model aerogel structures. For the computational homogenization, an approach to
average the first Piola–Kirchhoff stresses in a beam frame by neglecting rotational moments is suggested. To further overcome
the computationally most expensive part in the homogenization method, that is, solving the RVEs and averaging their stress
fields, a surrogate model is introduced based on neural networks. The network’s input is the localized deformation gradient
on the macroscopic scale and its output is the averaged stress for the specific material. It is trained on data generated by
the beam frame based approach. The effiency and robustness of both homogenization approaches is shown numerically, the
approximation properties of the surrogate model is verified for different macroscopic problems and discretizations. Different
(Quasi-)Newton solvers are considered on the macroscopic scale and compared with respect to their convergence properties.

Keywords Open-porous material · Polydispersity · Aerogel · Homogenization · FE2 · Finite elements · Beam frame · Neural
networks · Machine learning
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1 Introduction

The mechanics of open-porous materials form a fascinating
branch of materials science, unveiling a complex interplay of
structural intricacies andmechanical behaviors that have pro-
found implications across multiple disciplines. These mate-
rials, characterized by their interconnected network of voids
or pores, exhibit uniquemechanical properties driven by their
open-porous architecture [1]. The mechanical performance
is influenced by factors such as pore size, shape, distribu-
tion, and the material composition itself. Understanding the
deformation mechanisms and stress distribution within these
porous structures is crucial for optimizing their performance
in applications ranging from lightweight structural compo-
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nents to advanced filtration systems. A special class of such
materials is the territory of nanoporous materials, such as
nanofoams and aerogels. Aerogels exhibit pore sizes rang-
ing from as low as less than two nanometers to as high as over
hundreds of nanometers within the same material [2]. Such
a polydisperse nature significantly affects the thermal con-
ductivity and sound absorption characteristics, but also their
overall mechanical performance [3]. Formulating an intri-
cate understanding of the macroscopic mechanics of such
polydisperse open-porous materials demands the theoretical
understanding of the underlying deformation mechanisms.
While state-of-the-art experimental tools help to dive deep
into the microstructure of the material, computational mod-
eling has proven to establish concrete structure–property
relations providing, generally, a physics-informed explana-
tion.

Diverse studies have reported on the computational mod-
eling of open-porous materials that exhibit pores on the
macroscale, however, very few studies have investigated the
computational description of nanostructured open-porous
materials. Here, we focus and limit our search to physics-
informed or micromechanical models. Existing literature
uses either constitutive modeling or computational homog-
enization as a means to describe the mechanical behavior
of open-porous materials. Such materials are made up of
a network of three-dimensionally interconnected struts or
pore-walls. One of the first reports on the mathematical
description of the deformation in such materials was pre-
sented by Gent and Thomas [4], where they described the
network of elastic foams to be formed of dumbbell-shaped
elements called threads and dead volumes. Only extension
of the threads, namely axial deformation in the network
was considered. A much more robust theory was presented
later by Gibson and Ashby, who modeled these struts as
Euler–Bernoulli beams and provided a description of their
bulk mechanical behavior [5, 6]. While there were exten-
sions of these models presented, a notable development
was presented by Warren and Kraynik [7] who modeled
a perfectly ordered foam, whose unit cell was inspired by
a regular tetrakaidecahedron referred to as the open-foam
Kelvin cell. This accounted for a more complex geometrical
representation of a unit cell as compared to the previously
considered square or hexagonal cells in two dimensions, or
cubic cells in three dimensions. This model was inspired
by the work of Dement’ev and Tarakanov [8], who studied
plastic foams. While the Kelvin-cell model in [7] investi-
gated only the elastic properties, the approach was extended
to describe large deformations and crushing of foams, partic-
ularly metal foams using the finite-element-method [9, 10].
Interestingly, the model by Dement’ev and Tarakanov could
show very good validations under large deformations with
elastic foams. On the similar grounds of the strain energy
approach, first proposed in [8], Rege et al. [11] proposed

a generalized micromechanical constitutive model, based
on the representation of cell walls as beams, to describe
the macroscopic stress–strain response of aerogel-like open-
porous materials. The model was extended to capture the
densification in a later study and showed very good valida-
tion with biopolymer aerogels [12]. These above-mentioned
models, both constitutive or homogenization ones, base the
models on a representative unit cell, strictly speaking one
that represents ’a pore’ and the surrounding pore walls.
This is however insufficient to describe more polydisperse
open-porous materials. To this end, the construction of a rep-
resentative volume element (RVE) is necessary that accounts
for the complete pore space and the diversity in struc-
tural features of the material in consideration. In such a
case, the Voronoi-tessellation-approach is widely used. In
such a representation, the network is made up of Voronoi
cells, and the cell walls, representing struts, are modeled
again as beams. Analysis of such a modeling approach in
application to open-porous materials has been reported by
several authors [13–17]. These studies have however mostly
dealt with two-dimensional problems. For three-dimensional
modeling, most reports have used computer tomography
images and reconstructed them for structure–property anal-
ysis [18–21]. While this provides a realistic picture of the
microstructure, this approach becomes increasingly chal-
lenging as the pore sizes become smaller, particularly, when
one is dealing with those below 50 nm, which is the case, for
example in aerogels. Chandrasekaran et al. [22] proposed a
radical Voronoi method, wherein the pore space was repre-
sented by a random closed pack of polydisperse spheres and
the Laguerre-Voronoi-tessellations were generated over the
spheres. A heuristic analysis of the microstructural param-
eters was subsequently analyzed by Aney and Rege [23].
However, this approach of analyzing the RVE only helps
understand the bulk behavior under some classical loading
scenarios and does not account for geometrical effects that
may arise due to themicro–macro transition. It is herewhere a
multiscale homogenization approach is demanded and lack-
ing in the literature for such highly open-porous polydisperse
materials. This becomes increasingly important for large het-
erogeneous RVEs because resolving their structure on the
macroscopic scale using, for example, a beam model results
in large linear systems which cannot be solved without enor-
mous computational effort. To overcome this limitation, we
suggest to use a computational homogenization approach
based on the well-known FE2 method [24–28].

In the FE2 approach, the microstructure of the consid-
ered material is only resolved locally on the second scale,
usually named microscopic scale. In this article, instead of
using finite element discretizations on both levels, wemodify
the FE2 method and use beam frame models to resolve the
aerogel structure on the mesoscale. This is a natural choice,
since the use of beams to model aerogel structures on the
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mesoscopic scale is a state-of-the-art approach and already
used and suggested in [22, 29–31]. Also in the field of lattice
structures the analysis of microscopic beam networks is an
important research topic [32]. Multiscale methods [33–35]
as well as beam theory-based [36–39] and machine learning
[40] approaches are used for the analysis of these materi-
als. Honeycomb lattice structures are of special interest for
this research since it is a quite common structural element in
nature and engineering. However, methods for lattice struc-
tures usually cannot be applied in the case of aerogels due
to their unstructured arrangement of the fibrils. In the recent
years data-driven computing [41, 42] has increased in pop-
ularity and has also found application in the simulation of
porous materials [43] including structure–property predic-
tions of aerogels [44, 45].

In general, the FE2 method is computationally demanding
and to increase the computational efficiency and reduce the
time to solution, parallel implementations have been used
a lot in the past, cf. [46–48]. An alternative to the exten-
sive use of parallel computing is to drastically reduce the
computational complexity of the FE2 approach by training
and exploiting machine learning based surrogate models on
the microscale. Combinations of surrogate models based on
deep neural networks (DNNs) and the FE2 method are often
denoted by DNN-FE2 approaches and for different finite
element applications, such methods have already been suc-
cessfully studied in recent years. They have been proven to
be robust and computationally very efficient in different con-
texts. Some of these approaches can be found in [49–59].
Based on these existing DNN-FE2 methods, we suggest a
neural network (NN) based model which is applied locally
in all integration points of the macroscopic finite element
discretization to predict the average stress depending on the
localmacroscopic deformation. Therefore, theDNNreplaces
the solution of local beam frame problems and the averaging
of stresses in the usual homogenization approach. In contrast
to, e.g., [49–60], we consider porous aerogel-like structures
on the microscale and we use beam frame models to create
the data to train the DNN surrogate model.

To the best of our knowledge, in the present work, we
extend the large family of already existing homogeniza-
tion approaches with an FE2-related method based on beam
frame models on the microscale and, for the first time, train
deep learning-based surrogate models for this method. We
also, for the first time, extensively discuss the use of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [61]
as macroscopic nonlinear solver in FE2 for porous materi-
als, which is a good alternative if the consistent tangent is
not available or expensive to use.

The remainder of the article is organized as follows.
In Sect. 2 we describe the computational homogenization
approach using beam frame models on the microscale. We
replace the beam frame models by a faster surrogate model

based on NNs in Sect. 3. Finally, in Sect. 4, we show numer-
ical results and discuss the convergence of the different
methods and the quality and accuracy of the results.

2 Computational homogenizationmethods

Performing macroscopic simulations resolving the micro-
scopic morphology of aerogels and similar porous materials
on a single scale is computationally extremely expensive.
Therefore, we consider a computational scale bridging
approach where the morphological representation of the
open-porous material in consideration is resolved in local-
ized representative volume elements (RVEs). Our approach
is based on the well-known FE2 method [24–28]. This
method has been developed for the simulation of micro-
heterogeneous solid materials as, for example, dual- or
multi-phase steels. Usually, the macroscopic problem is dis-
cretizedwith comparably largefinite elementswhile thefinite
element discretization of the RVEs resolves the microscopic
structure. In our deviation from the FE2 method, we also use
a finite element discretization on the macroscopic scale but
a beam frame model on the microscopic scale which suits
the nanostructure of the aerogel. Following the FE2 frame-
work, in each Gaussian integration point of the macroscopic
problem, one RVE of the aerogel structure discretized with
beams is attached. Then, the RVE is deformed with respect
to the local macroscopic deformation in the corresponding
integration point and delivers, as a response, themacroscopic
stress in that point by averaging over the stresses in the beam
elements of the RVE. More details on the modeling of both
scales are given in the following sections.

2.1 Modeling the nanostructure of the RVE

The nanostructure of a typical open-porous material can be
seen in Fig. 1 which shows the scanning electron micro-
scope (SEM) image of a carrageenan aerogel. For a two-scale
homogenization approach, an RVE that is representative of
the material’s morphology, namely one that represents the
entire pore space of the material in consideration, is desired.
The RVE which represents such a nanostructure is generated
using a method presented in [17, 22] for the case of biopoly-
mer aerogels. The pore size distribution and the pore-wall
diameter are required as an input for the generation algorithm.
These parameters are obtained by experimental analysis such
as SEM images and theBarrett-Joyner-Halenda (BJH) analy-
sis of the physisorption isotherms andmayvary depending on
the exact procedure of the synthesis of the aerogel. A detailed
description of the experimental analysis of the material can
be found in [30].

The first step of the RVE generation method is to use a
sphere packing algorithm where the sphere volume distribu-

123



Computational Mechanics

Fig. 1 An SEM image of a biopolymer aerogel. The figure is adapted
from Rege et al. [30]

tion coalesceswith the experimentallymeasuredpore volume
distribution of the given open-porous material. Afterwards,
the sphere centers and the corresponding diameters are used
in a Laguerre–Voronoi tessellation and the interfaces of the
resulting Voronoi cells finally build the structure of the RVE.
The struts on the interfaces represent the pore walls of the
open-porous material. For a two-dimensional RVE the mod-
eling is illustrated in Fig. 2. For more details, see also [17,
22].

To ensure periodic boundaries in each dimension it is pos-
sible to copy the spheres obtained from the sphere packing
algorithm in each dimension and thus expand the domain.
Cutting out the center of the Laguerre–Voronoi tessellation
resulting from the increased number of sphere centers yields
a periodic domain of the same size as the original domain and
with continuous pore walls on each of the periodic bound-
aries. A visualization of this approach is presented in Fig. 3
where the green squares mark the copied domains and the
red square highlights the periodic boundaries of the center
domain. To enable the use of periodic boundary conditions
on the microscopic scale of our FE2 method we use this
approach for the generation of the RVEs.

We also like to mention that due to the random nature of
the generation method there is always a risk that the created
RVE contains orthotropy. However, testing the RVEs used in
this work has shown that in the regarded cases orthotropy has
only been small and did not influence the computed solutions
significantly. More detailed investigation of the the methods
influence on orthotropy in the generated RVEs will not be
part of this paper but could be an interesting topic for some
future work.

2.2 Microscopic problem

On themicroscopic level, the deformation of the porewalls in
theRVEs is computed in each step of the overall homogeniza-
tion algorithm and the resulting stress tensors are averaged
afterwards. In the RVE, all the pore walls are modeled as
Euler–Bernoulli beams and in the literature the resulting
model is often related to as beam frame model [62].

We consider an RVE consisting of nB beam elements and
nN nodes which are all connected by the beams. The com-
putation of the deformation and rotation of each of the beam
vertices on the microscopic scale requires solving a linear
system of equations

K · u = F .

Here, the stiffnessmatrix K is assembled frombeam stiffness
matrices Ke for each beam element e [63]. We consider a
single beamelement e = [

vi , v j
]
with a circular cross section

and with starting point and endpoint

vi =
⎛

⎝
xi
yi
zi

⎞

⎠ and v j =
⎛

⎝
x j
y j
z j

⎞

⎠ .

Then, the beam stiffness matrix is given by

Ke = TT · 1

Le

⎛

⎜⎜
⎝

D CT −D CT

C R1 CT R2

−D C D C
C R2 CT R1

⎞

⎟⎟
⎠ · T,

where the submatricesD,R1, andR2 are related to the defor-
mation and the rotation of the beam element. The matrix
C refers to the coupling of these variables. For the three-
dimensional case the submatrices are defined as

D =
⎛

⎜
⎝

E · A 0 0
0 12 E ·I

L2
e

0

0 0 12 E ·I
L2
e

⎞

⎟
⎠ ,

R1 =
⎛

⎜
⎝

E ·I 2
2·(1+ν)

0 0
0 4E · I 0
0 0 4E · I

⎞

⎟
⎠ ,

R2 =
⎛

⎜
⎝

− E ·I 2
2·(1+ν)

0 0
0 2E · I 0
0 0 2E · I

⎞

⎟
⎠ ,

and C =
⎛

⎜
⎝
0 0 0
0 0 −6 E ·I

Le

0 6 E ·I
Le

0

⎞

⎟
⎠ .

Finally, T is a transformation matrix which depends on
the orientation of the beam in space and the parameters E , I ,
A, and Le refer to Young’s modulus, the second moment of
area, the area of the cross section, and the length of the beam.
For a detailed description of the beam frame model and the
Euler–Bernoulli beam theory, we refer to [63].

The systems right hand side F = (Q1,M1,Q2,M2 . . . ,

QnN ,MnN

)T consists of forces Qi = (
Qx

i , Q
y
i , Q

z
i

)T

and bending moments Mi = (
Mx

i , My
i , Mz

i

)T
at each
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Fig. 2 Circle packing (left) and
Voronoi tessellation (right) for
the generation of the
two-dimensional RVE

Fig. 3 Voronoi tessellation that results from copied sphere centers. Red
square in the middle has periodic boundaries

node. Solving the equation yields the solution vector u =(
u1, θ1,u2, θ2, . . . ,unN , θnN

)T , where ui = (
uxi , u

y
i , u

z
i

)T

refers to thedeformationof eachnode and θ i = (
θ x
i , θ

y
i , θ zi

)T

is the vector of the corresponding rotations in each direc-
tion. By applying the beam frame model as described, it is
assumed that the deformation within one beam element can
be described by a cubic polynomial depending on its distance
from the starting point of the beam. Let us introduce the vari-
able ξ ∈ [0, 1] as a local measurement for each beam for the
normalized distance from each of the ends. For the beam ele-
ment e = [vi , v j ] the value ξ = 0 for example refers to the
global coordinates vi = (xi , yi , zi )T and the value ξ = 1
refers to the other node v j = (

x j , y j , z j
)T . With this local

variable it is possible to describe the deformation of each
beam over its length in terms of ξ as uxk (x, y, z) = ũxk (ξ)

for each xk = (x, y, z), where ũ is a polynomial of third
degree.

In general, the deformation of each node vi , i =
1, . . . , nN , in the RVE can be split into two parts

ui = ũi + ūi .

Here, ūi is defined by the macroscopic deformation F in
the corresponding integration point using the relation ūi =
F · vi while ũi is the microscopic fluctuation field, which is
finally computed by solving the microscopic problem.

We apply periodic boundary conditions to the fluctuation
and the rotations, that is,

ũ+ = ũ− and θ+ = θ−

for each pair of periodic nodes v+ and v− at opposing faces of
the RVE. To obtain a regular matrix K , in each corner of the
RVE, the fluctuations are fixed with zero Dirichlet boundary
conditions.

2.3 Macroscopic problem

We formulate the macroscopic problem based on the weak
formulation of the momentum balance equation which is
given by

∫

B0

δ x̄
(
Divx̄ P(F) − f̄

)
dx̄ = 0

for a test function δ x̄ . Without the consideration of any vol-
ume force the equation is reduced to

∫

B0

δ x̄ Divx̄ P(F)dx̄ = 0. (1)

The principle behind the FE2 method is that the relation
between the deformation gradient F(x̄) and the macroscopic
Piola–Kirchhoff stress P(F(x̄)) in a certain point x̄ is not
modeled by a material law but by the results of microscopic
simulations incorporating the micro-heterogeneous structure
of the respective material. While the macroscopic deforma-
tion gradient F(x̄) defines the boundary conditions of an
attached RVE as described in the latter section, the volumet-
ric average over the microscopic Piola–Kirchhoff stresses in
the RVE yield the macroscopic stress P(F(x̄)). Therefore,
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in each macroscopic integration point x̄ , we obtain

P(F(x̄)) = 1

V

∫

B0
P(F)dV (2)

where V = |B0| is the volume of the RVE belonging to x̄ .
We now have to specify what the integral actually means in
the case of an RVE modeled with beams. In that case, the
integral over the RVE is computed as the sum over all beam
elements. For each beam element, the integration of the first
Piola–Kirchhoff stress is based on a procedure given in [64];
see below for further details. We thus obtain

P(F(x̄)) = 1

V

nB∑

e=1

∫

Ve
P(F)dV .

Let us nowdescribe the procedure of averaging the stresses
within a single beam as given in [64]. We first consider a
single beam element e = [vi , v j ] which is aligned with

the unit vector r = (
rx , ry, rz

)T = v j−vi
Le

. Here, Le is the
length of the considered beam element e. It is well-known
that the first Piola–Kirchhoff stress can be expressed in terms
of P = J σ F−T , where σ is the Cauchy stress tensor and
J is the determinant of the deformation gradient F . With the
formulation of the locally transformed deformation ũ as a
cubic polynomial with respect to the normalized distance to
the ends of the beam ξ , it is possible to derive the expressions
J = 1+ tr(∇u) and F−1 = 1

J ((1 + J )I − F). Appendix A
of the appendix presents a detailed derivation of these rela-
tions. Based on these equations we derive a formulation for
the integral of the Piola–Kirchhoff stress over the volume of
the beam element. This integral can be expressed as the sum
of three separate integrals as

∫

Ve
PdV =

∫

Ve
σ

(
(1 + J ) I − FT

)
dV

=
∫

Ve
σdV +

∫

Ve
JσdV −

∫

Ve
σ FT dV .

(3)

The computation of the first integral of the right-hand side
is carried out as in [64]. There, a beam network is considered
and a virtualwork approach for the computation of an average
stress for the network is introduced. The resulting expression
for the average stress considers only the forces that appear
in each beam element but not the higher moments. With this
simplification the approach is not fully in alignment with the
Euler–Bernoulli beam theory. However, it is to expect that
the macroscopic behavior would not change significantly by
the use of a more complex approach for the computation of
the average stress. By applying this virtual work approach

the first integral can be reformulated as

∫

Ve
σdV =

∫

Ve

(
σxx σxy σxz
σxy σyy σyx
σxz σyz σzz

)
dV

=
∫

Ve
Le

(
Qxrx

1
2 (Qxry+Qyrx )

1
2 (Qxrz+Qyrz)

1
2 (Qxry+Qyrx ) Qyry

1
2 (Qyrz+Qzry)

1
2 (Qxrz+Qzrx )

1
2 (Qyrz+Qzry) Qzrz

)

dV

(4)

with the forces Qx , Qy, and Qz being expressed depend-
ing on the derivative of the projected deformation as Qxk =
− E ·I

L3
e

· d3ũxk
dξ3

.

Before deriving expressions for the other two integrals of
the right-hand side ofEq. (3),wemake the additional assump-
tion that the deformation u is constant over all cross sections
of each beam element. This does also not align with the basic
Euler–Bernoulli beam theory. However, this approximation
is reasonable in our case since we are only considering rel-
atively small cross sections compared to the length of each
beam and additionally, we consider small deformations and
therefore only a small bending occurs in the beams. The latter
two assumptions do not need to be added, as they are already
a requirement for the Euler–Bernoulli beam theory. Together
with the equation derived for the integrated Cauchy stress
we are able to formulate a simple expression for each of the
remaining integrals. We finally obtain

∫

Ve
JσdV = Le

∫ 1

0
Jdξ

∫

Ae

σ dA

=
(
1 + 〈u(v2) − u(v1), v2 − v1〉

Le

) ∫

Ve
σ dV and

(5)

∫

Ve
σ FT dV =

∫

Ve
σ(I + (∇u)T ) dV

=
∫

Ve
σ dV ·

(
I + (u(v2) − u(v1)) ⊗ (v2 − v1)

Le

) (6)

with ⊗ being the dyadic product.
Due to the assumption that the deformation u is constant

over cross sections, it is possible to separate the volume inte-
gral into one integral over the surface of the cross section
regarding theCauchy stressσ and one integral over the length
of the beam regarding the variables J and F , which both
depend on the deformation u. Summing Eqs. (4), (5), and
(6), finally yields an expression for the complete integral on
the left-hand side of Eq. (3). One example for the computa-
tion of the Piola–Kirchhoff stress tensor for one microscopic
deformation is presented in Fig. 4.

After computing the average stress in each beam, the aver-
age stress within the RVE P can be computed using Eq. (2)
by summing over all beams. An algorithmic representation
of our homogenization approach is shown in Fig. 5.
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Fig. 4 Result of
three-dimensional beam frame
model that is compressed in x
direction. Image of the
deformed RVE on the left and
the deformation gradient with
the resulting averaged first
Piola–Kirchhoff stress tensor on
the right. Colors of the beams
represent the von Mises stress
values in the corresponding
elements. von Mises stress
values are given in megapascal
(MPa)

Fig. 5 FE2 method with an RVE modeled with beams. The macro-
scopic deformation gradient F(x̄) defines the boundary conditions of
the beam frame model attached to the macroscopic integration point x̄ .
The stresses in the beams after solving the RVE problem is averaged
and results in the macroscopic stress P(F(x̄))

2.4 Algorithmic description

The macroscopic problem given in Eq. (1), which is dis-
cretized using finite elements, is solved using BFGS or an
alternative (Quasi)-Newton method where the Jacobian is
approximated using central difference quotients. For stabil-
ity and robustness, a dynamic load stepping is integrated such
that the total macroscopic deformation can be applied incre-
mentally in several pseudo-time or load steps, respectively.
When integrating over the macroscopic finite elements using
a Gauss quadrature rule, for each integration point the micro-
scopic problem is solved to obtain the corresponding value of
P . Let us recapitulate that we use a linear beam frame model
on the microscale and thus also the resulting macroscopic
problem is actually linear. Using the exact Newton method
as a macroscopic nonlinear solver would therefore lead to
its convergence in a single step. However, since we have put
no efforts in finding an exact formulation for a consistent

tangent modulus ∂P(F(x̄))
∂F(x̄)

we cannot use an exact Newton

method. Instead, as already mentioned, we use the Quasi-

Newton method BFGS and can avoid computing ∂P(F(x̄))
∂F(x̄)

completely. As an alternative, we can approximate the Jaco-
bianmatrix using difference quotients,which is an alternative
Quasi-Newton approach. For the approximation we use cen-
tral differences of the form

(
∂P(F(x̄))

∂F(x̄)

)

i, j

≈ P(F(x̄) + ε j )i − P(F(x̄) − ε j )i

2 · ε

for i, j ∈ 1, . . . , 4 or i, j ∈ 1, . . . , 9. For our applications
the approximation has shown to yield robust results for ε =
1e−6. Let us remark that for the surrogate model introduced
later on, we easily can use the exact Newton method and
alternatively BFGS. Let us finally give a brief overview of the
algorithm in Fig. 6, where we describe the procedure within
one load step of the dynamic load stepping procedure.

3 Neural network-based surrogatemodel

Depending on the number of beam elements in the RVE,
solving the microscopic problem and evaluating Eq. (2)
can be computationally expensive. This becomes especially
important for three-dimensional problems since a three-
dimensional RVE naturally needs to consist of a much larger
number of beam elements. Additionally six degrees of free-
dom instead of three are necessary, which also leads to larger
systems of equations. To deal with this issue, we introduce
a surrogate model that is supposed to compute the average
Piola–Kirchhoff stress and replace the microscopic simu-
lations based on the beam frame model. Here, we aim for
training a machine learning-based surrogate model. More
precisely, we have developed an artificial neural network
(NN) which is trained to predict the average Piola–Kirchhoff
stress tensor for one fixedmicroscopic structure. The NN has
to be evaluated in each integration point of the macroscopic
finite element problem and the input of the NN is always the
deformation gradient F(x̄). The open-source package Ten-
sorFlow [65] is used for the development and the training of
each regarded NN in this section.
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Fig. 6 FE2 algorithm using
BFGS or an alternative
Quasi-Newton approach as a
solver on the macroscopic scale
and beam frame RVEs. The
complete algorithm is usually
embedded in a (dynamic) load
stepping scheme for robustness
and global convergence

3.1 Surrogate model in two dimensions

Let us first describe the training procedure and give some
details on the NN architecture we use. In a first step,
the fixed microscopic beam frame problem is generated
with the approach explained in Sect. 2. We consider a two-
dimensional open-porous structure and randomly set pores
following a given pore size distribution. The resulting beam
frame structure which is used to generate the training data
for the model consists of 225 beam elements and 172 joints
at which the beams are connected. Let us note that the model
is comparably small and in the present article we just aim for
a proof of concept of the suggested method. Also, we only
use a prototype MATLAB implementation. It is planned to
consider larger and more representative RVEs in the future
using more efficient C/C++ based implementations.

For the two-dimensional RVE the data set for the training
of the NN consists of about 110,000 pairs of macroscopic
deformation gradients F and stresses P , where the latter one
is obtained by solving the corresponding RVE problem and
averaging over the stresses within the beams. To obtain a
large variety of different macroscopic deformation gradients,
several FE2 simulations following the algorithm from Fig. 6
have been carried out and for each BFGS step in all integra-
tion points the pairs (F, P) are stored.

For setting up the different FE2 simulations we defined
seven different macroscopic basic test cases and further vary
these by changing the degree of deformation for each case.
Each of the seven basic test cases has different macroscopic
boundary conditions and a different deformation of themate-
rial such that the data set is expected to cover a wide variety
of microscopic deformations. The magnitude and direction
of each computed macroscopic deformation is set randomly

during the generation process. Results for the deformation
examples that are used for the generation are presented in
Fig. 7. The same relatively small grid is used for each of
the examples and the resulting problem has 50 degrees of
freedom. There is no need to use larger problems for the gen-
eration of the training data. In contrast, the computation of a
larger number of small problemsyieldsmore diversity among
the localized deformation gradients in the integration points
compared with a smaller number of large problems. There-
fore, we expect a higher variety in the generated training data
defining and using many small macroscopic problems.

In the generation of the training data we have exclusively
used linear finite elements to discretize themacroscopic prob-
lem.However, the choices of the basis functions and elements
for the macroscopic finite element method are not expected
to affect the quality of the training data since the generated
input and output values of the NN are only related to the
microscopic problem. The validation data set consisting of
about 12,000 input and output pairs has been generated in
the same manner.

The distribution of the generated data set is presented
in Fig. 8. All input components are distributed relatively
tight around zero. The corresponding small values for the
standard deviations which can be observed in Table 1 are
intended since we are only assuming small deformations.
This assumption is necessary because the applied beam frame
modelwhich is based onEuler–Bernoulli beam theory is only
useful for small deformations. This is acceptable because a
large proportion of reported literature investigates the linear
elastic properties of open-porous materials owing to their
dependence on the density that is demonstrated in terms of
scaling laws, particularly between Young’s modulus or com-
pressive strength versus density [1, 66].
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Fig. 7 Seven basic deformations
that are used to generate the
training data in two dimensions.
To obtain a large training data
set, the basic deformations are
modified randomly by changing
the grade and orientation of
deformation. The colors
represent the von Mises stresses
in the computed solutions

Fig. 8 Distribution of the input and output data generated for the training of the two-dimensional neural network

Table 1 Description of the input data for the training of the two-
dimensional neural network

Variable name Fxx F yx Fxy F yy

Mean 0.02 0.03 0.00 0.00

Standard deviation 0.24 0.23 0.23 0.19

Minimum value −4.90 −4.54 −4.31 −4.84

Maximum value 4.87 4.92 4.65 4.99

As illustrated in Table 2, the components of the result-
ing first Piola–Kirchhoff stress tensors which are the target
output variables for the training of our neural network are
similarly distributed around the mean of zero. This is not
surprising since the matrix in Table 3 presents distinct corre-
lations between the input and output components.

For the two-dimensional RVE a feed-forward NN with
three hidden layers is used as the basic structure of our model
(see Fig. 9). The activation function for each hidden layer is
chosen to be the Gaussian error linear unit (GELU) activa-
tion function [67] and the number of neurons in the hidden
layers are set to 128, 256, and 128. The activation of the out-
put is linear. For choosing a proper architecture for the NN
multiple activation functions in combination with different

Table 2 Description of the output data for the training of the two-
dimensional neural network

Variable name Pxx P yx Pxy P yy

Mean 0 0 0 0

Standard deviation 0.09 0.04 0.04 0.07

Minimum value −2.00 −1.97 −1.50 −2.00

Maximum value 0.50 1.31 1.55 0.44

Table 3 Correlation coefficients
between the input and output
variables for the
two-dimensional data set

Pxx P yx Pxy P yy

Fxx 0.39 0.09 0.20 0.10

Fyx 0.07 0.50 0.46 0.05

Fxy 0.07 0.35 0.52 0.16

Fyy 0.00 0.18 0.22 0.28

The most significant values are
marked in bold face

layer sizes were considered. A grid search evaluation cover-
ing these parameters has shown that GELU activation suits
especially well for the given problem and that a higher num-
ber of neurons in the model can lead to a smaller validation
error. However, the reduction of the error is only signifi-
cant up to 256 neurons per layer. The grid search results are
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Fig. 9 Architecture of the feed-forward neural network for a two-
dimensional microscopic problem. First three layers have GELU
activation and linear activation function is used for the output layer

Table 4 Grid search results (test loss) for the neural network in two
dimensions with different numbers of layers and neurons per layer

Activation Neur./layer One layer Two layers Three layers

Sigmoid 64 2.24e−04 8.99e−06 5.06e−06

128 3.36e−04 3.37e−06 9.68e−07

256 7.95e−04 1.18e−06 6.46e−07

512 8.13e−04 4.52e−07 6.23e−07

tanh 64 3.20e−05 1.66e−06 6.68e−07

128 3.36e−05 2.65e−06 1.03e−06

256 9.12e−05 2.42e−06 4.20e−06

512 1.26e−04 1.41e−06 3.62e−06

gelu 64 2.19e−07 1.69e−08 7.13e−09

128 1.27e−07 2.58e−08 5.76e−09

256 8.11e−08 8.53e−08 8.36e−09

512 5.33e−08 1.85e−07 1.08e−08

The lowest loss value is marked in bold face

Fig. 10 Loss during the training of the neural network for two-
dimensional RVEs

presented in Table 4 and the smallest values in the result-
ing validation loss are highlighted. The table shows that a
network architecture of 3 layers with 128 neurons per layer
yields the lowest loss.

For training, an adam optimizer [68] has been used to
minimize the mean squared error (MSE). After a total of
1500 training epochs a sufficient reduction of the loss has

been reached; see Fig. 10. The loss for the validation data
has also decreased sufficiently.

3.2 Surrogate model in three dimensions

For a given three-dimensional aerogel RVE the general pro-
cedure of generating training data and training the NNworks
similar to the two-dimensional case. The size of the input
and output of the NN is different since the three-dimensional
deformation gradient and Piola–Kirchhoff stress tensor have
nine components each. We consider a microscopic RVE of
1482 beam elements which are connected at 1005 joints.

The training data is similarly generated from solving
macroscopic deformation test cases. However, for the three-
dimensional model the approach on how to set up the
macroscopic tests differs since we do not use a fixed num-
ber of deformation examples. For the generation of the data
set a relatively small cube geometry is considered with
192 degrees of freedom. Dirichlet boundary conditions are
applied to each of the nodes on the boundaries of this geom-
etry with a fixed deformation determined by a randomly
generated deformation gradient. This means that the defor-
mation on the boundaries is determined by ū = Fd · x̄ with
the matrix Fd being randomly generated. Due to the large
influence of randomness, the procedure is expected to yield
a high variety of deformations. For the training data about
118,000 data points are generated. The validation data con-
sists of about 13,000 equally generated data points.

The input variables are distributed around zero similar to
the two-dimensional data set. The distribution of the input
and output data can be visually observed in Fig. 11 and the
values are also presented in Section B of the appendix. The
correlation between the input and output data is presented in
Table 5.

Besides the number of neurons in the input and output
layer, the network architecture for the three-dimensional case
is quite similar to the two-dimensional case.Here, theNNhas
three hidden layers with 256 neurons in each layer and again
uses a GELU activation for each of these hidden layers. The
choice of the architecture resulted again from a grid search
evaluation. In Table 6 the resulting validation losses of the
grid search algorithm is presented with the smallest values
being highlighted. The grid search evaluation shows similar
results to the two-dimensional casewith theGELUactivation
function yielding the smallest loss values.

During the training of the selected neural network archi-
tecture the training loss reduced within 2000 epochs to a
final loss of 4.8e−10. The development of the loss during
training is presented in Fig. 12. As the image also shows, the
validation loss has also decreased during the training though
it settles on a slightly higher level compared to the training
loss.
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Fig. 11 Distribution of the input and output data generated for the training of the three-dimensional neural network

Table 5 Correlation coefficients
between the input and output
variables for the
three-dimensional data set. The
most significant values are
marked in bold face

Pxx P yx Pzx Pxy P yy Pzy Pxz P yz Pzz

Fxx 0.59 −0.01 0.07 −0.00 −0.11 0.02 0.06 0.02 −0.02

Fyx −0.00 0.68 0.05 0.66 −0.02 −0.08 0.05 −0.08 0.00

Fzx 0.06 0.07 0.63 0.07 0.05 −0.05 0.61 −0.05 0.03

Fxy −0.01 0.61 0.03 0.63 0.05 −0.10 0.03 −0.10 −0.03

Fyy −0.08 0.06 0.01 0.07 0.59 −0.04 0.00 −0.05 −0.04

Fzy −0.00 −0.04 −0.03 −0.04 −0.03 0.62 −0.03 0.60 −0.07

Fxz 0.01 0.04 0.61 0.04 −0.05 0.03 0.64 0.03 0.09

Fyz −0.01 −0.06 0.01 −0.07 −0.07 0.63 −0.00 0.66 0.06

Fzz −0.02 0.01 0.10 0.01 −0.03 0.02 0.10 0.01 0.64

Table 6 Grid search results (training loss) for the neural network in
three dimensions with different numbers of layers and neurons per layer

Activation Neur./layer One layer Two layers Three layers

Sigmoid 64 1.99−04 3.31e−05 2.49e−05

128 4.55e−04 9.18e−06 6.43e−06

256 5.50e−04 4.37e−06 2.93e−06

512 1.37e−03 2.00e−06 2.61e−06

tanh 64 5.22e−05 1.88e−05 8.03e−06

128 5.81e−05 1.52e−05 3.64e−06

256 1.47e−04 1.56e−05 4.21e−06

512 4.17e−04 1.16e−05 7.02e−06

gelu 64 1.61e−06 8.66e−07 5.07e−07

128 3.10e−07 1.24e−07 1.34e−07

256 1.88e−07 5.38e−08 3.95e−08

512 3.38e−07 3.30e−07 4.24e−08

The lowest loss value is marked in bold face

3.3 Reduction of computational effort

The surrogate model has been originally built to reduce the
computational effort for computing the first Piola–Kirchhoff
stress. First of all it needs to be mentioned that the presented
computation times in this work have been measured with
MATLAB and that a more efficient implementation with
a better use of the hardware could yield significantly dif-
ferent computation times. We would like to compare the

Fig. 12 Loss during the training of neural network for three-
dimensional RVEs

computational effort of computing the first Piola–Kirchhoff
stress tensor from the the NN with the effort of solving the
linear system of equations presented in Sect. 2. We do not
take the computational cost of training the NN into account
since the training process needs to be executed only once for
each machine learning model and can then be applied to run
many simulations. Therefore, the training cost of the model
becomes negligible compared to the reduced computational
effort if the regular beam frame solver on the microscopic
scale is replaced by the NN approach. The training of each
NN took about 1.5h on one 2.1 GHz core of an Intel Xeon
Gold 6230 node.
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In the special linear case of the linear beam frame model
it is possible to apply different methods for solving the lin-
ear system of equations on the microscopic scale. Since the
stiffness matrix resulting from the beam frame is the same
for each microscopic problem it is possible to compute a fac-
torization (with pivoting) of this matrix P · K = L ·U with
L being a lower triangular matrix, U being a upper triangu-
lar matrix, and P being a pivoting matrix. Now, instead of
solving the linear system K · u = F directly, the solution u
can also be computed using a forward and backward substi-
tution with the matrices L andU which yields a significantly
reduced computation time. However, this procedure is only
suitable in the case of a linearmicroscopic problem. Since the
NN approach is also expected to be applicable to nonlinear
problems, we are also interested in a comparison of the NN
with the method of solving the microscopic problem directly
with MATLAB’s backslash operator, which will be the only
possible option for nonlinear problems. Therefore, we want
to consider for the comparison of the computation times both
the forward backward substitution and the solution using the
backslash operator.

Directly solving the beam framemodel with the backslash
operator and computing the homogenized Piola–Kirchhoff
stress tensor for the two-dimensional RVE takes about 400
times longer than the evaluation of the NN with the back-
slash operator requiring themajority of the computation time.
Since the backslash operator, that is, using the efficient UMF-
PACK factorization package, is generally regarded as a fast
option for solving a linear system of equations, it is expected
that with another implementation the computational effort
of the NN solver would still be similarly smaller than the
effort of the beam frame solver for this specific example.
Computing the microscopic solution with a forward back-
ward substitution is much faster than the backslash operator
but also takes about 10 times longer than the evaluation of
the NN.

For the three-dimensional case the factor is much higher
since the beam frame RVE consists of more beam elements
and solving the resulting system requires a higher compu-
tational effort. In this case, the evaluation of the NN takes
about 1000 times less time than solving of the beam frame
model directly with the backslash operator. This includes
also the time needed inMATLAB for averaging the resulting
stresses however the backslash requires the majority of the
computational effort. Let us remark that in realistic applica-
tions larger RVEs will be needed. Since the computing time
of sparse direct solvers as UMFPACK grows approximately
cubically with the dimension of the problem, we expect an
even larger benefit using NN-based surrogate models. Com-
puting the solution with forward backward substitution also
requires about 80 times the computation time of the evalua-
tion of the NN.

Fig. 13 FE2 algorithm using the Newton or the BFGS method as a
solver on the macroscopic scale and an NN as a surrogate model on the
microscopic scale. The complete algorithm is usually embedded in a
(dynamic) load stepping scheme for robustness and global convergence

3.4 Algorithmic description

Basically, the resulting algorithm exploiting the surrogate
model is similar to Algorithm 6. Only the evaluation of the
average stress P is replaced by an evaluation of the NN. Let
us remark that by deriving the NN, we can easily compute
the tangent/Jacobian matrix and alternatively use Newton’s
method instead of BFGS here. We summarize the algorithm
in Fig. 13.

4 Numerical results

In this section, we aim for a numerical verification that the
developed homogenization approach using the beam frame
model gives reasonable results and that themachine learning-
based surrogate model accurately approximates them in a
computationally efficient manner. Additionally, we inves-
tigate the convergence behavior of the BFGS and Newton
method for different examples. All stress values presented in
this section are given in megapascals (MPa).

4.1 Microscopic simulation and NN prediction

First, we want to illustrate the behavior of the NN in com-
parison to the beam frame solver with the homogenization
of the Piola–Kirchhoff stresses by presenting some results
for microscopic deformations, the resulting Piola–Kirchhoff
stress computed with the homogenization method, and the
prediction of the NN for the same deformation. We consider
the three-dimensional RVE which is also shown in figure 4
with themicroscopic boundary conditions that are introduced
in Sect. 2. The results of uniaxial compression tests in each
of the three dimensions and two examples which show a shift
of the RVE. For the presented microscopic deformations the
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predictions of the NN are very close to the Piola–Kirchhoff
stress tensors computed with the beam frame solver and the
homogenization method. Table 7 also shows the norm of the
deviation between both computed stress tensors. The Frobe-
nius norm is used for the evaluation.

4.2 Convergence of themacroscopic solver

As already mentioned we use (Quasi)-Newton methods [69]
for solving themacroscopic problem. ExactNewtonmethods
require the computation of a tangent which is unknown for
the case of the beamRVEs and its computation is expected to
be expensive. TheBFGSmethod is a common choice to over-
come the problem of computing the tangent since it requires
only an initial guess for the tangent and adjusts this approxi-
mation in each iteration using only first order derivatives, as,
e.g., the gradient. In general, this approach lacks the quadratic
order of convergence of Newton’s method [70], but each iter-
ation can be computed much faster. In the present work, we
consider Newton’s method with an exact tangent for the NN
approach and a Quasi-Newton method with an approximate
tangent for the beam frame approach. The numerical approx-
imation in this case is computed with central differences. In
the following, we will refer to this approach as Newton’s
method with beam frame microstructure. We also consider
the BFGS method [69, 71] for both NN and beam frame
approach with the Wolfe [72] condition to control the step
length. We initialize the Hessian of the first BFGS step with
the exact Hessian in the case of the NN and the approximated
Hessian in the beam case. This increases the computation
time for the first BFGS step but reduces the total number of
iterations for the solver. The stopping criteria for both, the
Newton and BFGS are both based on the reduction of the rel-
ative residual. If the ratio between the residual of the current
update and the residual of the initial value is smaller than
1e−10 the criterium is satisfied and the solver terminates.

For our first two-dimensional test case we consider a
square domain on the macroscopic scale. Dirichlet boundary
conditions are applied to the left and right boundaries of the
domain and these nodes are shifted in x direction depending
on their y value; see Fig. 14 for the macroscopic deforma-
tion. The macroscopic problem is discretized using bilinear
brick finite elements or linear or quadratic triangular ones.
We will use this test case to compare different aspects of our
macroscopic solvers. Refining the mesh is straight forward,
namely by doubling the numbers of finite elements in x and
y direction which leads to a quadratic increase in the degrees
of freedom (dofs). To find a solution, the solver has to adjust
the position of all considered nodes as can be inferred from
the solutions in Fig. 14.

Considering the beam frame model for the microscopic
problem, both macroscopic solvers are capable for each con-
sidered test case to find a solution that reduces the residual

until it reaches the stopping criteria. For larger test cases, an
adaptive load stepping has proved to increase the stability of
both methods.

In Table 8 the number of iterations per load step and the
total computation time are presented for the beam frame (BF)
model as well as for the surrogate NN on the microscopic
scale. For solving the beam frame model on the microscopic
scale we regard two methods mentioned in Sect. 3. Due to
the linearity of the microscopic problem a decomposition of
the stiffness matrix is possible and the microscopic prob-
lem can be solved with a forward backward substitution. In
Table 8 we present the computation times for this approach
as well as for the much slower approach of solving the
linear system of equations directly with MATLAB’s back-
slash solve which would also be required for a nonlinear
microscopic problem. For the macroscopic discretization P1
elements are considered. The table shows that on average the
BFGSmethod requires only slightly more iterations per load
step than the Newton method. However, in contrast to the
Newton method, the BFGS method does not require recom-
puting the tangent and solving a linear system of equations in
each step. Due to this reduced computational effort for each
iteration the total computation time of the BFGS method is
significantly lower. For both microscopic solvers the behav-
ior with respect to the number of iterations is identical since
the NN is trained to replicate the deformation behavior and
the resulting stresses of the beam frame model. Therefore,
the macroscopic solver obtains a very similar information in
each quadrature point and likewise computes similar itera-
tions. Let us remark that the computing times are much lower
using the surrogate model but we do not see the same factors
that we saw in the comparison of the computational effort for
the microscopic solvers in the previous section. This is the
case since many MATLAB-based computations, especially
on themacroscopic scale, are carried out in both cases in addi-
tion to the computation of P . This portion of the computing
time can surely be decreased by a hardware-aware and effi-
cient implementation. Especially the macroscopic solver can
either be parallelized in case of Newton’s method or trans-
ferred to a GPU in case of BFGS. Domain decomposition
methods (DDM) and multigrid methods (MG) are expected
to reduce the computation time of the macroscopic solvers.
An efficient HPC implementation of our approaches exploit-
ing GPUs is planned for the future.

4.3 Comparison of different macroscopic grids

TheNNhas only been trained on simulation results computed
with quadrilateral elements and bilinear Ansatz functions on
the macroscopic scale. The numerical test cases use also
discretizations with triangular elements and linear (P1) or
quadratic (P2) Ansatz functions. To confirm that the NN can
be used for P1 andP2discretizations despite itwas not trained
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Table 7 Piola–Kirchhoff stress
computed for the
three-dimensional RVE with
beam frame homogenization
method and neural network

deformation gradient PBF PNN
‖PBF−PNN ‖F

‖PBF‖F

F =
(
0.9 0 0
0 1 0
0 0 1

) ( −123.82 0.59 0.53
0.66 −6.28 1.91
0.59 1.90 −9.92

) ( −123.82 0.61 0.53
0.67 −6.33 1.90
0.60 1.87 −9.95

)
5.90e−4

F =
(
1 0 0
0 0.9 0
0 0 1

) ( −9.79 −1.92 −0.45
−1.98 −121.82 0.21
−0.50 0.19 −9.53

) ( −9.80 −1.89 −0.46
−1.95 −121.85 0.21
−0.51 0.15 −9.55

)
5.09e−4

F =
(
1 0 0
0 1 0
0 0 0.9

) ( −10.82 0.89 −1.84
0.89 −6.54 −0.05

−1.85 0.00 −121.05

) ( −10.85 0.91 −1.86
0.89 −6.60 −0.05

−1.86 −0.03 −121.06

)
7.39e−4

F =
(
1 0.2 0
0 1 0
0 0 1

) ( −28.01 104.40 1.41
104.32 −8.72 −2.75
1.39 −2.77 −8.52

) ( −28.02 104.44 1.39
104.32 −8.77 −2.73
1.38 −2.78 −8.50

)
4.63e−4

F =
(
1 0 0.2
0 1 0
0 0 1

) ( −35.89 0.32 107.46
0.36 −10.51 1.47
107.43 1.51 −8.78

) ( −35.88 0.38 107.44
0.40 −10.57 1.51
107.41 1.52 −8.78

)
7.03e−4

Fig. 14 Solutions of the deformation test with Q1 (a), P1 (b), and P2 (c) Ansatz functions

Table 8 Number of
macroscopic iterations per load
step and total computing time
for P1 discretization

dofs 50 162 578 2178 8450 33282

BF solver Newton iterations 2 3 3 3 4.3 4

BFGS iterations 4 4.5 5 7.5 12.3 12.6

Newton comp. time [min] 0.37 2.01 4.72 15.01 138.25 709.21

BFGS comp. time [min] 0.16 0.69 2.59 9.06 126.08 458.75

Newton w. backslash solver [min] 1.25 10.36 45.35 247.05 2080.12 >48h

BFGS w. backslash solver [min] 0.39 1.86 7.01 252.94 2738.93 >48h

NN solver Newton iterations 2 3 3 3 4.3 4

BFGS iterations 4 4.5 5 7.5 12.3 12.6

Newton comp. time [min] 3e-3 0.01 0.05 0.21 4.90 402.70

BFGS comp. time [min] 4e-3 0.01 0.04 0.18 4.78 179.71

on data obtained with P1 or P2 simulations, the deviation of
the solutions computed with the beam frame model are com-
pared to the solutions computed with the surrogate model.

The deviations of the solutions computed with the NN
from the solutions computed with the beam frame model are
shown in Table 9. In the tables ūNN refers to the solution
computed with the NN and ūBF refers to the solution com-
puted with the beam frame model. The expressions σ̄vM,NN

and σ̄vM,BF refer to the corresponding von Mises stresses.
We consider different macroscopic meshes with the level of

refinement marked by the corresponding degrees of freedom
(dofs).

We can observe that the errors of the NN solution com-
puted with different Ansatz functions at the same level of
refinement are very similar. The choice of the Ansatz func-
tion does not seem to have an influence on the quality of
the macroscopic solution when the surrogate model is used.
Let us remind that the network has only been trained on
data obtained from solutions computed with bilinear square
elements. Nonetheless the NN is capable to yield equally
good solutions for other element shapes and Ansatz func-
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Table 9 Deviations of the NN solutions and the BF solutions in different norms for different macroscopic discretizations (discr.), that is, bilinear
brick (Q1) and linear (P1) and quadratic (P2) triangular elements

Norm Discr. Degrees of freedom

50 162 578 2178 8450 33282

Q1 1.28e − 3 1.58e − 3 1.73e − 3 1.80e − 3 1.84e − 3 1.85e − 3
‖ūNN−ūBF‖2‖ūBF‖2 P1 1.24e − 3 1.56e − 3 1.72e − 3 1.80e − 3 1.83e − 3 1.85e − 3

P2 1.30e − 3 1.61e − 3 1.74e − 3 1.81e − 3 1.84e − 3 1.85e − 3

Q1 1.38e − 3 1.52e − 3 1.56e − 3 1.58e − 3 1.58e − 3 1.58e − 3
‖ūNN−ūBF‖∞

‖ūBF‖∞ P1 1.33e − 3 1.49e − 3 1.55e − 3 1.57e − 3 1.58e − 3 1.58e − 3

P2 1.38e − 3 1.54e − 3 1.57e − 3 1.58e − 3 1.58e − 3 1.58e − 3

Q1 1.19e − 3 1.26e − 3 1.37e − 3 1.43e − 3 1.46e − 3 1.46e − 3
‖σ̄vM,NN−σ̄vM,BF‖2

‖σ̄vM,BF‖2 P1 1.11e − 3 1.28e − 3 1.39e − 3 1.44e − 3 1.45e − 3 1.46e − 3

P2 1.54e − 3 1.47e − 3 1.46e − 3 1.47e − 3 1.47e − 3 1.46e − 3

Q1 1.43e − 3 1.59e − 3 1.90e − 3 2.39e − 3 2.42e − 3 3.13e − 3
‖σ̄vM,NN−σ̄vM,BF‖∞

‖σ̄vM,BF‖∞ P1 1.66e − 3 1.80e − 3 1.86e − 3 2.42e − 3 2.55e − 3 3.13e − 3

P2 1.82e − 3 1.81e − 3 2.45e − 3 3.16e − 3 3.41e − 3 2.88e − 3

Fig. 15 Absolute difference in von Mises stress between the NN solu-
tion and the solution computed with the beam frame model

tions. In general, this is expected, since the NN is trained on
localized data which does not really depend on the finite ele-
ment discretization used on the macroscopic scale. Finally,
the computed solutions for a refinement with 8450 dofs are
presented in Fig. 14 and the absolute difference between the
von Mises stress of the solutions computed with the NN and
with the beam frame model is shown in Fig. 15. The macro-
scopic error of the NN solution is not evenly distributed and
higher error values can be observed near the boundaries of the
domain. However, the expected distribution of the derivation
values is difficult to predict since the error depends locally on
the quality of the networks prediction for the Piola–Kirchhoff
stress.

The results show that the deviation of the solution com-
putedwith the NN from the solution computedwith the beam

frame model slightly increases with an increasing number of
elements. The behavior can be explainedwith the fact that the
computation of the Piola Kirchhoff stress in a single integra-
tion point already slightly deviates from the averaged stress
computed with the beam frame model. This error is small for
each evaluation but in finer macroscopic meshes with more
evaluation points these small errors can sum up to a larger
macroscopic deviation in the deformation. In the considered
mesh refinements the error stays relatively small and for some
refinements and norm measurements the error seems to stay
constant or even decreases. This behavior leaves room for
the assumption that the error might converge with a further
refinement and might not increase significantly when a cer-
tain level is reached. Unfortunately we are not able to support
this assumption with further data at this point. We plan larger
simulations using a more efficient software framework than
MATLAB in the future.

4.4 Compression of a punched plate geometry

As amore complex example, we consider a two-dimensional
plate with a circular hole in the middle. The square shaped
geometry has an edge length of 1 and the hole center has
a diameter of 0.4. We want to apply a compression test on
this geometry to compare the macroscopic solutions using
the beam frame approach and the NN. The geometry is
discretized with P1 elements for both microscopic solvers
and the macroscopic solution is computed with the BFGS
method. For the compression test, the left and right bound-
aries are shifted towards the hole and fixed in x and y
direction with Dirichlet boundary conditions.
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Fig. 16 Compressed punched plate computed with the NN approach and P1 elements. Coloring of the elements in the left image represents the
resulting von Mises stresses and coloring in the right image shows the absolute difference of the von Mises stress to the solution computed with
the beam frame solver

Fig. 17 Compressed plate with
five punched holes computed
with the NN approach and P1
elements. Colors of the elements
represent the resulting von
Mises stress

The result of the compression test computed with the NN
approach and the resulting difference in von Mises stress are
shown in Fig. 16. The largest stress differences between the
two solutions are observed in the regions of the geometry
with also the highest stress values. The total error between
the macroscopic solutions is evaluated with the following
norms:

‖ūNN − ūBF‖2
‖ūBF‖2 = 1.26e − 3,

‖ūNN − ūBF‖∞
‖ūBF‖∞

= 1.80e − 3,

‖σ̄vM,NN − σ̄vM,BF‖2
‖σ̄vM,BF‖2 = 8.96e − 4,

‖σ̄vM,NN − σ̄vM,BF‖∞
‖σ̄vM,BF‖∞

= 1.20e − 3.

4.5 Compression of a punched plate geometry with
five holes

The NN approach allows the simulation of finer and more
complex geometries without exhausting the computational
resources. As an example we consider a two-dimensional
square-shaped plate with an edge length of 1 and five cir-
cular holes. One hole is in the center of the plate with a
diameter of 0.4 and four smaller holes with a diameter of 0.2
are placed around it with the same distance from the center.
The circleswhich form the holes are placedwithout any over-
lap. For this geometry we apply the same two-dimensional
compression test as in the previous example with the left and
right boundaries being fixed with Dirichlet boundary condi-
tions. We use linear (P1) elements for a fine discretization of
the geometry which yields 23,824 degrees of freedom. The
computed BFGS solution of this deformation is presented in
Fig. 17 with the resulting vonMises stresses expressed by the
coloring of the elements.
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Fig. 18 Solution of the three-dimensional deformation test computed with Q1 (a), P1 (b), and P2 (c) Ansatz functions. Coloring of the elements
represents the resulting von Mises stresses

4.6 Comparison of three-dimensional test cases

For our macroscopic test problem in three dimensions we
consider a regular cube. Dirichlet boundary conditions are
applied to the boundaries in x direction and the affected nodes
are both rotated around the center of the face and pulled in x
direction away from the center of the cube.The cube is rotated
by a total of 36 degrees. This geometry again fits well for a
comparison of different finite element grids since trilinear
cube elements can be used for the discretization as well as
linear or quadratic tetrahedral elements. The refinement of
the mesh is achieved by doubling the number of elements
in each dimension and yield a cubic increase in the dofs.
Solutions of the test problem computed with the different
Ansatz functions are presented in Fig. 18. A comparison of
the error between the macroscopic solution computed with
the beam frame model and the solution resulting from the
surrogate approach is shown in Table 10. Multiple levels of
refinement are computed and the results show that the norms
of the deviations are in a very similar range to the norms of
the regarded two-dimensional test case. The table shows that
the errors for one refinement level is about the same for all
Ansatz functions and does not indicate a better performance
of the NN approach for one of the discretizations. For higher
numbers of degrees of freedom the errors increase slightly,
without occurrence of any significant outliers.

4.7 Torsion of a cube with a cylindrical hole

As a more complex example of a three-dimensional defor-
mation, we consider a cube with an edge length of 1 and a
cylindrical hole in the middle. The cylinder-shape is placed
parallel to the x axis with a diameter of 0.5 and the geome-
try is discretized with linear P1 elements. Dirichlet boundary
conditions are applied to the boundaries with x is equal to
zero or one and similar to the previous test example each
affected node is twisted and shifted in x direction away from

Table 10 Deviations of the NN solutions and the BF solutions in dif-
ferent norms for different macroscopic discretizations (discr.), that is,
bilinear brick (Q1) and linear (P1) and quadratic (P2) tetrahedral ele-
ments

the cubes center. We again consider a total rotation of 36
degrees. The resultwith the corresponding vonMises stresses
are presented in Fig. 19.

4.8 Torsion of a cylinder

As another example of a three-dimensional deformation we
consider a cylinder with the length of 2 and a diameter of 1.
The cylinder-shape is placed parallel to the x axis and the
geometry is discretized with linear P1 elements. The result-
ing discretization has 27,231 dofs. For the torsion test case
Dirichlet boundary conditions are applied to the boundaries
with x equals zero or one similar to the previous test example
each affected node is twisted and shifted in x direction away
from the cylinders center. The total rotation of the geome-
try is 36 degrees as in the previous test cases. The results in
Fig. 20 show that the distribution of the von Mises stresses is
more evenly compared to the examples of the torsion test of
a cube in Fig. 18.
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Fig. 19 Torsion of a cube
geometry with a circular hole
discretized with P1 elements

Fig. 20 Torsion of a cylinder
geometry discretized with P1
elements. Left image shows the
undeformed geometry and right
image shows the computed
BFGS solution

Appendix A Derivation of determinate and
inverse for the beam framemodel

Based on the assumptions of the beam frame model as
described in Sect. 2 the deformation of each beam element
can be expressed with respect to the distance of its starting
node.

u(x, y, z) = ũ(ξ) =
⎛

⎝
axξ3 + bxξ2 + cxξ + dx
ayξ3 + byξ2 + cyξ + dy
azξ3 + bzξ2 + czξ + dz

⎞

⎠

with ξ = ‖(x,y,z)T −v1‖
‖v2−v1‖ ∈ [0, 1] being the relative distance

from the coordinate X to the first vertex of the beam v1. With
this expression it is possible to compute the Jacobian of u as

∇u(X) =
⎛

⎝
uxx uyx uzx
uxy uyy uzy
uxz uyz uzz

⎞

⎠

with uxi x j = ∂ ũxi
∂ξ

∂ξ
∂x j

= (
3axi ξ

2 + 2bxi ξ + cxi
) (v2−v1) j

‖v2−v1‖2 .
This elementwise notation is equivalent to the dyadic product
∇u(X) = ∇ξ ũ(ξ)⊗∇ξ . Therefore, the deformationgradient

can be expressed in the form

F = I + p ⊗ q.

for p = ∇ξ û(ξ) and q = ∇ξ .
For the three-dimensional case we will now derive that

for every matrix F ∈ R
3×3 that follows this relation and

any given p, q ∈ R
3 the determinant is given by det(F) =

1+ trace(p⊗q). Using Leibniz formula for the computation
of the determinant of the 3 × 3 matrix yields

det(F) =(1 + px qx ) · (1 + py qy) · (1 + pz qz)

+ 2 px qx py qy pz qz

− (1 + px qx ) · py qy pz qz
− (1 + py qy) · px qx pz qz

− (1 + pz qz) · px qx py qy .

After resolving the brackets most of the terms cancel out
which leads to the simplified form

det(F) = 1 + px qx + py qy + pz qz = 1 + trace(p ⊗ q).

With the given expression for the determinant it is also
possible to derive the formulation for the inverse F−1 =

1
det(F)

((1 + det(F)) − F). For the computationof the inverse
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Table 11 Description of the
input data for the training of the
three-dimensional neural
network

Variable name Fxx F yx Fzx Fxy F yy Fzy Fxz F yz Fzz

Mean −0.01 0.00 0.02 0.00 0.01 0.00 0.01 −0.01 0.00

Standard deviation 0.19 0.19 0.19 0.19 0.19 0.18 0.19 0.18 0.19

Minimum value −0.96 −1.54 −1.54 −1.56 −1.01 −1.64 −1.56 −1.66 −1.01

Maximum value 2.40 1.57 1.57 1.56 2.10 1.67 1.57 1.53 2.27

Table 12 Description of the
output data for the training of
the three-dimensional neural
network

Variable name Pxx P yx Pzx Pxy P yy Pzy Pxz P yz Pzz

Mean −0.16 0.00 0.01 0.00 −0.13 0.00 0.01 0.00 −0.13

Standard deviation 0.27 0.16 0.16 0.16 0.27 0.14 0.16 0.14 0.27

Minimum value −2.00 −1.46 −1.38 −1.24 −2.00 −1.29 −1.37 −1.16 −2.00

Maximum value 0.53 1.29 1.27 1.44 0.41 1.42 1.23 1.32 0.58

we use the well-known relation of the inverse with the adju-
gate matrix F−1 = 1

det(F)
· adj(F) with the adjugate matrix

given by

adj(F)

=
⎛

⎝
1 + py qy + pz qz −px qy −px qz

−py qx 1 + px qx + pz qz −py qz
−pz qx −pz qy 1 + px qx + py qy

⎞

⎠ .

Finally, together with the relation det(F) = 1+ px qx · py qy ·
pz qz it is possible to express the inverse matrix as

F−1 = 1

det(F)
adj(F) = 1

det(F)
((1 + det(F)) · I − F) .

Appendix B Distribution of the training data
for the three-dimensional NN

The distribution of the training data generated for training
the NN in the three-dimensional case is presented in this
part of the Appendix. Table 11 shows the measures of the
distribution of the input data and the distribution of the output
data is described by Table 12.
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