Grundt, Dominik und Rakow, Astrid und Borchers, Philipp und Möhlmann, Eike (2025) What does AI need to know to drive: Testing relevance of knowledge. Science of Computer Programming, 244. Elsevier. doi: 10.1016/j.scico.2025.103297. ISSN 0167-6423. (im Druck)
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Kurzfassung
Artificial Intelligence (AI) plays an important role in managing the complexity of automated driving. Nonetheless, training and ensuring the safety of AI is challenging. The safe generalization from a known to an unknown situation remains an unsolved problem. Infusing knowledge into AI driving functions seems a promising approach to address generalization, development costs, and training efficiency. We reason that ascertaining the relevance of infused knowledge provides a strong indication of the correct execution of previous development phases of knowledge infusion. As a causal reason for AI performance, relevant knowledge is important for explaining AI behavior. This paper defines a novel notion of relevant knowledge in knowledge-infused AI and for requirements satisfaction in traffic scenarios. We present a scenario-based testing procedure that not only checks whether a knowledge-infused AI model satisfies a given requirement R but also provides statements on the relevance of infused knowledge. Finally, we describe a systematic method for generating abstract knowledge scenarios to enable an efficient application of our relevance testing procedure.
elib-URL des Eintrags: | https://elib.dlr.de/213085/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | What does AI need to know to drive: Testing relevance of knowledge | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2025 | ||||||||||||||||||||
Erschienen in: | Science of Computer Programming | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 244 | ||||||||||||||||||||
DOI: | 10.1016/j.scico.2025.103297 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
Name der Reihe: | Elsevir Science of Computer Programming | ||||||||||||||||||||
ISSN: | 0167-6423 | ||||||||||||||||||||
Status: | im Druck | ||||||||||||||||||||
Stichwörter: | Knowledge-infused AI Relevance AI driving functions | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > Systems Theory and Design | ||||||||||||||||||||
Hinterlegt von: | Grundt, Dominik | ||||||||||||||||||||
Hinterlegt am: | 10 Mär 2025 06:46 | ||||||||||||||||||||
Letzte Änderung: | 10 Mär 2025 06:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags