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Artificial Intelligence (AI) plays an important role in managing the complexity of automated 
driving. Nonetheless, training and ensuring the safety of AI is challenging. The safe generalization 
from a known to an unknown situation remains an unsolved problem. Infusing knowledge 
into AI driving functions seems a promising approach to address generalization, development 
costs, and training efficiency. We reason that ascertaining the relevance of infused knowledge 
provides a strong indication of the correct execution of previous development phases of knowledge 
infusion. As a causal reason for AI performance, relevant knowledge is important for explaining AI 
behavior. This paper defines a novel notion of relevant knowledge in knowledge-infused AI and for 
requirements satisfaction in traffic scenarios. We present a scenario-based testing procedure that 
not only checks whether a knowledge-infused AI model satisfies a given requirement R but also 
provides statements on the relevance of infused knowledge. Finally, we describe a systematic 
method for generating abstract knowledge scenarios to enable an efficient application of our 
relevance testing procedure.

1. Introduction

The development of highly automated driving functions for transportation is advancing rapidly [1]. The use of Artificial Intelli-
gence (AI) modules for path planning [2], perception [3], and decision-making [4] promises to improve safety, efficiency, and comfort 
of mobility [5]. If automated mobility is to become established in public transport, AI driving functions must be safe, trustworthy, 
and socially acceptable. In order to meet these requirements, human drivers usually go through a driving school and have extensive 
experience from being exposed to traffic since early childhood, e.g., as passengers or pedestrians. They can draw on their acquired 
knowledge of traffic rules, physics, and social and societal norms to solve novel traffic scenarios.

Many AI approaches attempt to learn to drive based on a large amount of data. Unfortunately, this attempt is limited by the 
quantity and quality of the available data. Further, collecting real data and annotating the recorded data is tremendously time-
consuming and costly. In recent years, the generation of suitable synthetic data has already significantly reduced the cost and time 
required for data-driven AI approaches [6]. However, AIs’ generalization capabilities still need to be improved, and obtaining data 
for every possible situation seems intractable even with synthetic data. Hence, different approaches are needed.

Recently, there has been a focus in the AI community on using knowledge to develop AI driving functions [7]. One such application 
is Knowledge Infusion. Knowledge Infusion aims to bring prior knowledge (e.g., in transportation domain knowledge from physical laws, 
traffic rules, and social norms) into the AI. The resulting AI should generalize beyond the training data set, consider rules and social 
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Fig. 1. Overview of our contribution. This paper focuses on the notions of relevance and our testing procedure to assess the relevance of infused knowledge and AI’s 
performance.

norms, and act more safely in novel scenarios. Knowledge-infused AI thus seems to provide a means to yield more trustworthy [8] 
and social [9] AI models than purely black box data-driven approaches. There are various methods for knowledge infusion where 
either (1) knowledge is explicitly formalized or (2) indirectly given via enriched data sets containing diverse knowledge. For more 
details on the various techniques and their challenges, we refer to the surveys [10] and [11]. Knowledge-infused AI has already been 
successfully used in many domains: modeling physical dynamics [12], automated driving functions [13,14], medical prediction [15], 
manufacturing [16], and gaming agents [17]. A more detailed review of related work can be found Section 8.

In the context of knowledge infusion, we focus on the relevance of prior knowledge in the automotive domain. We consider prior 
knowledge that is specified in a symbolical logic and is either (i) a refinement of requirements or (ii) a description of critical scenarios. 
We consider an AI development process as described in [10] where knowledge is first identified by, e.g., domain experts, and then the 
knowledge is formalized before it gets integrated into the AI model. The process is described in more detail in Section 2. This process 
of knowledge-infusion is an active research field [10,18]. We address the following research question within this field:

RQ: Is the infused knowledge relevant for an AI model to fulfill its task?

Intuitively, knowledge is relevant if it needs to be infused into the AI because the AI does not satisfy its requirements otherwise. As 
AI training is costly, being able to provide relevant knowledge hence will enhance effective AI development. However, the above 
question Q is rarely considered in current development processes and the concept of relevance is not formally defined in this context. 
The work presented in this paper is driven by practical experience gained from the research project KI Wissen [7] and is further 
substantiated by the challenges identified in [19], which we discuss in Section 4.1.

Our contributions are threefold. For one, to answer the question RQ, we define a notion of relevant knowledge of knowledge-infused 
AI for requirements satisfaction in traffic scenarios (cf. Section 4). This notion captures the intuition that knowledge is relevant if it 
needs to be infused into the AI model to enable it to satisfy its requirements. We argue that a formal notion is the foundation for 
building a database of relevant domain knowledge for the development of new AI models targeting similar functionalities. Moreover, 
our notion is such that it captures a causal reason for a model’s behavior and thus improves the explainability of AI models [20,21]. 
These benefits for the development of AI are discussed in more detail in Section 4.1.

Our second contribution is a testing procedure for relevance given a system requirement R and corresponding knowledge K. This 
procedure indicates whether the infused knowledge K is

(a) valid, incomplete or incorrect formalized,
(b) considered by the AI, and
(c) relevant for an AI driving function to satisfy R.

The derived indicators (summarized in Table 5) make it possible to validate development phases, to diagnose issues of knowledge 
infusion and to control the storage of relevant knowledge. This method assumes a given AI model. As this testing procedure is 
scenario-based, it can be incorporated seamlessly into state-of-the-art scenario-based validation and verification of automated driving 
functions [22,23].

Our third contribution is a systematic method for deriving abstract knowledge scenarios, which enables us to execute our relevance 
testing procedure efficiently. Here, we exploit the visual yet formal specification language Traffic Sequence Charts (TSCs) [24] for 
scenario-based system requirements specification, corresponding knowledge, and abstract knowledge scenarios.

Fig. 1 gives an overview of our contributions within the context of our work. We only present the context as far as necessary and 
focus on the relevance notions and our testing procedure to assess the relevance of infused knowledge and the AI’s performance. 

Given requirements and knowledge formalizable as Traffic Sequence Charts (see [14] for a taxonomy of TSC formalizable knowl-
edge and [25] for TSC formalizable requirements) and an AI model, our method assesses the relevance of infused knowledge.
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Fig. 2. Embedding of knowledge-infused AI development phases in the established V-model. Our contribution aims to determine whether identified and integrated 
knowledge is relevant in the sense that it enables an AI driving function to satisfy system requirements.

This paper is structured as follows: In Section 2, we summarize the motivation for knowledge-infused AI and introduce the phases 
of developing knowledge-infused AI models. In particular, we describe embedding the development into requirements-driven devel-
opment of driving functions. Section 3 provides preliminaries for our work. In Section 4, we provide an overview of existing notions 
used in the Information Retrieval (IR) field and define a notion of relevance for knowledge infused into an AI. We present our approach 
for generating abstract knowledge scenarios based on Traffic Sequence Charts (TSCs) in Section 5. Section 6 presents our relevance 
testing procedure for knowledge-infused AI driving functions. A case study of this work is presented in Section 7. We discuss the 
related work in Section 8. Finally, in Section 9, we summarize our work and present future work.

2. Knowledge-infused AI driving functions

In 1994, Towell et al. presented one of the fundamental works on knowledge-infused AI1 [26]. Their paper presents a hybrid 
learning system for neural networks. Connectionist learning techniques are combined with the infusion of problem-specific domain 
knowledge represented in propositional logic. It is demonstrated that the resulting networks generalize better than a wide variety of 
learning systems and even better than several techniques proposed by biologists [26].

Since then, technical innovations have enabled complex applications of knowledge infusion, e.g. in domains such as medicine [27] 
or transportation [28]. In the transportation domain, especially path planning, faces an utmost complex input space due to a rather 
unconstrained context in the real world. The following observation motivates the interest in knowledge infusion. Humans do not 
need to know all possible driving scenarios to behave appropriately in unknown situations. Instead, experiences, rules, and norms are 
used to derive decisions. In [10], the authors present a survey on approaches regarding infusing such relevant information, referred 
to as knowledge [10], into the AI. Such a knowledge infusion may improve the performance of cyber-physical systems that often face 
complex input spaces when making decisions, especially in non-data-covered scenarios.

2.1. Development of knowledge infused AI

In addition to a data-driven AI development process, the development of knowledge-infused AI comes with additional steps, each 
of which brings its challenges [10,18]. These steps are Knowledge Identification, Knowledge Formalization, Knowledge Integration, AI 
Training and AI Evaluation.

Fig. 2 gives an overview of these steps and illustrates their embedding in the system development process, which will be discussed 
later in Section 2.2. First, we briefly explain the individual steps.

Knowledge identification First of all, potentially relevant knowledge must be found. This phase is called Knowledge Identification. Here, 
domain experts and data scientists analyze the application domain for knowledge relevant to the system under development. In this 
phase, artifacts of analytical steps like the results of criticality analysis [29] may be used, which forms the basis for safety-critical 
knowledge. Identified knowledge may, for instance, be specific friction values for different road surfaces and weather conditions. 

1 often also referred to as knowledge-integrated, -augmented, or knowledge-based AI.
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Knowledge formalization After identification, the knowledge is formalized for integration in the Knowledge Formalization phase. Many 
prior knowledge sources differ in quality, type of knowledge, and the form in which this knowledge is available. For instance, 
mathematical and physical knowledge is often already formalized and can be used for integration without much effort. In contrast, 
expert knowledge, e.g., traffic rules or court decisions, is usually not given inappropriately formalized for integration. To this end, 
researchers like Manas et al. [30], Szegedy [31], Westhofen et al. [33], and Borges et al. [34] explore how, e.g., naturally linguistic 
knowledge, can be formalized.

Knowledge integration and AI training Once knowledge has been formalized, it can be infused in different ways. Common are, e.g., 
the embedding in training methods like knowledge-infused Reinforcement Learning [13] or by utilizing the AI architecture [35]. 
This phase is called Knowledge Integration. Subsequently, after knowledge has been infused, the AI Training can take place. Depending 
on the integration and training methods, e.g., adjustments can be made to weighting knowledge at runtime to achieve better AI 
performance [18].

AI evaluation Finally, after training knowledge-infused AI, AI Evaluation then evaluates whether the trained AI driving function 
correctly applies infused knowledge and achieves the expected or a better performance. Different methods exist for evaluation. 
[32,36] present approaches to evaluation at runtime while [18] presents evaluation approaches performing executing the AI in tests. 
We also advocate assessing the relevance of the knowledge in this phase for three reasons. (1) Knowing what knowledge is relevant 
indicates whether the identification and formalization of the knowledge was correct. (2) We envision building knowledge bases to 
support the development of new AI models. Since training is expensive, such knowledge bases should only manage truly relevant 
knowledge. Finally, (3) we envision that methods for self-explanation can benefit from this knowledge.

2.2. Requirements-driven knowledge-infused AI system development

For the homologation of vehicles with knowledge-infused AI controlling a driving function, the AI development steps must be inte-
grated into established requirements-driven development processes such as the established V-model development process, illustrated 
in Fig. 2. The phases of knowledge-infused AI development take place after the decision has been made that knowledge-infused AI 
shall realize a driving function. Hence, the phases can be seen as instances of the implementation phase of the V-model process. We 
envision that the Knowledge Identification uses results of the requirements elicitation since the AI incorporates knowledge relevant to 
the respective requirement. Whether the infused knowledge is relevant (enables the AI to satisfy its requirements) has to be checked 
in the phase of AI Evaluation – i.e., after knowledge formalization and the actual infusion.

3. Preliminaries

In this section, we give short introductions to the topics of artificial intelligence (Section 3.1), testing safety-critical systems 
(Section 3.2), and infusing knowledge into AI driving functions (Section 3.3). It also provides some background used in the later 
sections and introduces some basic notions and concepts.

In Section 3.1, some basic assumptions regarding the AI considered are made, and we introduce knowledge infusion as an operation 
that yields a new model from an initial model. Section 3.2 first explains the role of scenarios when testing safety critical systems and 
then explains the conceptual differences between formal verification and testing using simulation. In Section 3.3, we introduce our 
frequently used denotations, defining sets of trajectories and their relations.

3.1. Artificial Intelligence (AI)

This paper considers black-box AI methods. As learning approaches, we focus on the data-driven approaches of Supervised Learning 
and Reinforcement Learning, although the scope of the paper is wider than these. In Supervised Learning, each training example helps 
the model to recognize the differences between its prediction and the actual outcome. At the beginning of training, the model can 
make mistakes, but it improves its predictions through feedback from the labels and by adjusting the weights. Over time, the error 
decreases, and the model converges to a function that captures the relationship between inputs and outputs. Overfitting can occur 
when the model is too much tailored to the training data and generalizes poorly to new data. In Reinforcement Learning, the model 
receives feedback in the form of rewards, which can occur with a delay. The learning process is dynamic, as the agent actively 
explores the environment while continuously adapting. To achieve the best results, the agent must balance exploration (exploring 
new strategies or paths) and exploitation (taking advantage of knowledge already learned).

We classify as the reasons for AI failing to learn a requirement R as

Inadequate Model: The model lacks the capacity or the right architecture for the task.
Inadequate Data: The dataset is too small, poor in quality, or lacks some knowledge 𝕂.
Inadequate Training: The training is either too short (underfitting), too long (overfitting), or there are inadequate settings 
of hyperparameters (e.g., bad gradient flow, poor choice of optimizer).

Knowledge infusion Knowledge means information validated by, e.g., experiments, studies, or experts [10]. In particular, knowledge 
does not need to be true in our setting.
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As described in more detail in Section 2, we consider a basic Knowledge Infusion Process of the phases Knowledge Identification, 
Formalization, Integration, AI Training and AI Evaluation. In the following, we define the term Knowledge Infusion Operation as the 
operation that changes the initial model M𝑖 to the infused model M𝑛. The Knowledge Infusion Operator hence represents the effect 
of Knowledge Integration plus AI Training and assumes identified and formalized knowledge as well as an initial model be given. 
If the infusion had no effect, the initial model M𝑖 equals the knowledge-infused model M𝑛. The Knowledge Infusion Operation is 
parameterized by the integration means.

Notion (Knowledge Infusion Operation). The knowledge infusion operation, ⊙, takes

• an initial net M𝑖,
• knowledge K, and
• a means of integration I, which is either

– a modification of the architecture or
– the knowledge as input
as well as

• a training process P𝑡,

and yields a new model M𝑛 =⊙ (M𝑖,K,I,P𝑡).

In abuse of notation, we also write M𝑛 = M𝑖 ⊙ K to denote that M𝑛 is the result of infusing knowledge K into M𝑖. I and P𝑡 are not 
further specified, but we make a further assumption: The training P𝑡 of M𝑖 causes a gradual shift of the model’s focus as it refines its 
knowledge based on the new data distribution. As training continues, parts of the previously learned knowledge may be modified. The 
dynamics of how the previously learned is preserved, changed, or forgotten depends on several factors. One factor is the similarity of 
the data/requirement/knowledge. The model will likely preserve the original requirement if previously learned knowledge is similar 
or closely related to the new knowledge. If the new data is sufficiently different from the original training data, the M𝑛 ’s internal 
representation can shift significantly, which may lead to forgetting the previous knowledge. Another factor is the learning technique. 
To prevent catastrophic forgetting, continual learning techniques may be used, such as e.g., elastic weight consolidation (EWC), which 
adds a penalty for changing important weights tied to the old knowledge, or replay methods, which store samples from the previous 
task and periodically retrain the model on them to maintain older knowledge.

3.2. Testing

Part of the specification of a driving function is the operational design domain (ODD) that defines the limits for using the function. 
According to the ISO13586:2000 [22], scenarios are an intrinsic part of evaluating the safety of autonomous driving systems.

A scenario is a finite temporal sequence of an arbitrary number of situations. In contrast to a static traffic situation, scenarios 
enable the analysis of relationships and interactions between the environment, objects, and traffic participants and their evolution 
over time. Scenarios can be abstract to a certain degree and correspond to several concrete scenarios. In Section 5.1, we will present 
Traffic Sequence Charts (TSC), an example of a formal yet visual language that can be used to specify abstract traffic scenarios.

Due to the open world context of driving functions, we cannot explore all possible behaviors of an AI driving function. Therefore, 
a combination of testing and formal verification methods is employed to verify that the system satisfies a given requirement R. To 
test a system, it is the current state of practice that test engineers carefully determine a test suite for a given requirement R ito. a set 
of concrete test cases. This suite should cover all relevant cases wrt. satisfying R. Thus, it realizes a good coverage of the ODD. The test 
executions (or test runs) (i.e., executing the test cases) are monitored whether they satisfy R.

Test cases can be executed in simulation (i.e., within a virtual environment), in the real world, or in hybrid environments combining 
simulations with the real world. In this work, we focus on testing in simulation, but our contribution is not limited to this testing 
method.

3.2.1. Formal methods & testing in simulation

The notion model-based design refers to a design process where the development phases are accompanied by assessment methods 
that verify and validate the system under development early on. These methods either test the system in simulation or explore the 
system’s behavior through formal methods.

The simulation engines may vary over time and have different foci as well as the employed formal models. We use in this paper 
the term world model to refer to the model W of the application domain (either the formal model or model implicitly realized by the 
simulation engine). In our case, we assume that the world model describes the context of the driving function, which has a finite set 
of objects, such as vehicles or roads.

A trajectory 𝜏 ∈  of length 𝑙 is a function assigning values to attributes of a finite set of objects (e.g., vehicles, roads) for each 
time 𝑡 ∈ [0, 𝑙) ⊂ 𝕋 . 𝜏(𝑡) denotes a vector of values for all the objects’ attributes at time 𝑡 ∈ 𝕋 . We denote the set of all trajectories of 
the world model W as 𝕎. We also call the trajectories in 𝕎 concrete traffic scenario. In this paper, we study linear temporal properties, 
as described by, e.g., metric temporal logic [37].
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Table 1
Commonly Used Denotations and their Meaning.

Denotation Meaning 
M𝑖 initial AI model 
M𝑛 model after infusion of K
K knowledge to infuse 
K𝑖 knowledge learned by M𝑖
W world model 
R requirement for M𝑖, M𝑛
𝒮 test suite

𝕄n set of traj. of M𝑛 ∥ W ⊆𝕎
𝕄i set of traj. of M𝑖 ∥ W ⊆𝕎
𝕂 set of traj. of W satisfying the knowledge K, 𝕂 ⊆𝕎
𝕂𝑖 set of traj. of M𝑖 satisfying the requirement R, 𝕂𝑖 ⊂𝕎, 

represents the knowledge learnt by M𝑖
𝕎 set of traj. of W 
ℝ set of traj. of W satisfying the requirement R, ℝ ⊂𝕎
𝕊 set of traj. of W that are part of 𝒮, 𝕊 ⊆𝕎
𝕄 ⊂ℝ all of M’s traj. satisfy R
𝕄 ⊆𝒮 ℝ M satisfies R in 𝒮, i.e. 𝕄 ∩ 𝕊 ⊆ℝ
M𝑛 ≥𝒮,R M𝑖 M𝑛 satisfies R in all test runs of 𝒮 where M𝑖 satisfies R

We use the term requirement (or more generally property) to refer to a formal specification R that describes a set of trajectories of 
W. We denote the set of trajectories that satisfy R as ℝ. For example, R can be the requirement “Always respect safety distances” and is 
presented by all concrete scenarios where the safety distances are respected.

When we say our “AI model M satisfies the requirement R”, it means that we place M into the world model W (see 3.3), denoted as 
WM, and then all trajectories 𝕄 of WM satisfy R, also denoted as 𝕄 ⊆ℝ.

While formal methods are often able to derive that a property holds for all trajectories of WM but often have to trade expressiveness 
for computational feasibility or even decidability, simulations are usually done non-exhaustively.

We can check whether a (simulation) test run satisfies a (formal) requirement R. Given a test suite 𝒮, we say that “M satisfies R
verified by testing”, if we execute M in all runs of 𝒮 and they all satisfy R. We abbreviate verified by testing as vbt and also write 
“𝕄⊆𝒮ℝ” instead of “M satisfies R vbt”. Note that 𝕄⊆𝒮ℝ does not imply that all possible runs satisfy R, 𝕄⊆ℝ, since there may be 
runs that violate R but have not been chosen for the test suite 𝒮.

3.3. Knowledge infusion & sets of trajectories

In the following, we introduce frequently used denotations. Table 1 gives an overview. This section can be skipped at the first 
read and used in the later sections.

When talking about knowledge infusion in this paper, we usually refer to the initial AI model as M𝑖. We denote the desired system 
requirement as R and the knowledge to be infused into M𝑖 as K. Moreover, the AI model resulting from the knowledge infusion is 
usually denoted as M𝑛.

This paper discusses how knowledge infusion changes the behavior of the AI model semi-formally. Since we do not explicitly 
fix the world model (simulation engine), we cannot fully formally specify the resulting trajectories. Nevertheless, we can concisely 
express our ideas using sets of trajectories for reasoning about the accomplished system behavior. Hence, we present how these sets 
of trajectories could be defined in the following section. The sketched automata represent just one way in the AI model M, and the 
world model W could be specified.

Let automata M modeling the AI control and W modeling the world be given. The states of W are labeled propositions describing 
the values of the attributes of all objects of the world model. The edges of M and W are labeled by actions, and transitions are enabled 
based on whether respective guards are true. These guards refer to propositions describing the values of attributes of all objects of the 
world model W. When reasoning about the performance of an AI model M, we often refer to the set of trajectories that can occur when 
M is in control. Since we are interested in how well the AI model M performs its control task, we employ the controller realized by M to 
control the vehicle in the world model W, denoted as WM. This means that we compose the automata modeling M and W, synchronizing 
W with M on the actions controlled by M. The resulting trajectories, denoted as 𝕄, of the composed system WM = W ∥ M describe what 
can happen in the world W if M is in control. If 𝕄 ⊆ℝ, then only behaviors that satisfy R can occur.

A test suite 𝒮 specifies a finite set of executions by fixing environmental attributes, i.e. the test conditions. We denote the set of 
trajectories of W that have the required environmental attributes as 𝕊. M𝑛 ≥𝒮,R M𝑖 denotes that M𝑛 satisfies R in at least all test cases 
of the test suite 𝒮 where M𝑖 satisfies R.

Let us assume that M𝑖 initially does not satisfy R, but there are some runs of M𝑖 that satisfy R. Hence M𝑖 has learned something but 
not sufficiently much. We use K𝑖 to refer to the initial knowledge learned by M𝑖. More precisely, K𝑖 is a constraint that specifies the 
set of trajectories 𝕂𝑖 of M𝑖 ∥ W that satisfies 𝕂𝑖 ⊆ℝ.
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4. Notion of relevant knowledge for AI driving functions

In this section, we explore the concept of relevant knowledge in knowledge-infused AI for requirement satisfaction in traffic 
scenarios and present related works. We define the notions of ODD relevance (see p. 8) and Scenario-relevance Indication (see p. 10), 
and discuss their relation and significance for the work presented here.

We define relevant knowledge as knowledge that enhances AI performance in meeting its requirements, R. More formally, rel-
evant knowledge in AI-controlled driving functions refers to the knowledge essential for improving AI performance to fulfill the 
requirements R.

4.1. Why do we need a notion of relevance and a relevance test procedure?

Within the research project KI Wissen [7], academia and industry explored approaches on how different modalities of knowledge 
can be formalized and integrated into AI driving functions utilizing existing domain knowledge for data-driven AI driving functions. 
In three concrete use cases (i) pedestrian detection under occlusion, (ii) complex lane change, and (iii) controlled rule exception, 
the goal was to develop methods for integrating domain knowledge and validating the knowledge-infusions [18,14]. To this end, 
we investigated how domain knowledge can be formalized [14] and can check if M𝑛 acts conform to K (𝕄n ⊆𝒮 𝕂?) during run-
time [32]. Thereby using Traffic Sequence Charts (TSC). Throughout this project, we discovered a lack of guidance in identifying 
relevant knowledge and choosing the means of knowledge infusion, whether this is the choice of training data or modification of the 
architecture. While this issue was not the focus of the project, and hence a state of practice has not been scientifically established 
within the project, Heyn et al. [19] recently investigated challenges encountered by practitioners when specifying training data and 
runtime monitors for safety-critical machine learning (ML) applications. They analyzed ten interviews with developers of ML models 
for critical applications in the automotive and telecommunications sectors, addressing two research questions:

“RQ1: What challenges do practitioners face when specifying training data for ML models in safety-critical software?” [19] and “RQ2: 
What challenges arise when specifying runtime monitors, particularly regarding the fulfillment of safety requirements?” [19].

Their findings include

C1 that the data selection process is often nontransparent, with no clear guidelines for defining data variety or context, and current 
safety standards provide little guidance,

C2 a lack of appropriate metrics and insufficient safety standard guidance hinders the specification of runtime monitors, and
C3 challenges regarding explainability of ML systems [19, p.3].

Our concept of relevance addresses challenge C1 by guiding the selection of data and design of AI driving functions, strengthening 
the connection between requirements and training data. Starting with an AI model M𝑖 that does not satisfy its requirement R, we 
consider knowledge as relevant when its infusion enables the model to satisfy R. The process of infusing knowledge K—transforming 
M𝑖 into M𝑛—provides a causal explanation for why the infused model satisfies R. This approach establishes a clear link between 
requirements and training data during the knowledge infusion process.

Moreover, our notion of relevance accounts for various factors determining whether an infusion operation leads to satisfying R, 
offering guidance on when the knowledge can be reused. This serves as the foundation for a knowledge base that catalogs, curates, 
and maintains relevant knowledge, facilitating more efficient AI development through knowledge reuse. We discuss this issue in more 
detail on page 10.

Regarding the lack of guidance from safety standards in training data and runtime monitor specification (C1 and C2), our approach 
uses the results from requirements elicitation, where a criticality analysis leads to safety-related requirements R𝑠𝑎𝑓𝑒. Whether relevant 
knowledge is infused is tested by formalizing the infused knowledge K and the associated safety requirements R𝑠𝑎𝑓𝑒 in abstract traffic 
scenarios, leading to formal and clearly defined conditions on the context and tasks of AI driving functions. This formalization 
also enhances transparency, allowing for cross-examination through formal methods or expert review. Thus, the infusion of relevant 
knowledge, as part of a requirements-driven development process, ensures alignment with safety standards and guides AI development 
in a structured manner. We can directly derive runtime monitors from the specified formal conditions, based on our work on Traffic 
Sequence Charts (TSC) runtime monitoring [32]. The degree of M𝑛 satisfying R can be considered as a measure of M𝑛 guaranteeing 
the respective safety properties. Our testing procedure hence provides a test-based measure of guaranteeing the safety properties.

Addressing C3 on explainability, our relevance framework clarifies the causal relationship between the knowledge K, and the 
models M𝑖 and M𝑛, by explaining that M𝑖 needs K to meet R. While explainability is not the primary focus of this paper, we plan to 
explore self-explainable AI following the approach outlined in [21].

To summarize, the current development and training of ML models lacks guidance and transparency [19]. The infusion of relevant 
knowledge, as presented in this paper, contributes to alleviating this challenge by establishing a formally specified link between the 
requirements and data/knowledge infusion and characterizing influencing factors of relevance. It hence increases the reusability 
of knowledge and guides data selection for future ML models. The aforementioned advantages of our contribution are based on 
theoretical considerations. Any evaluation regarding building up a knowledge base would require long-term studies. In Section 7, 
several examples examine how our overall testing approach (cf. Fig. 1) establishes relevance indications. It thereby illustrates our 
clearly defined process of how different types of knowledge for safety requirements are formalized, infused, and evaluated regarding 
their relevance for the considered initial AI model.
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4.2. Dimensions of relevance for AI driving functions

In the following, we discuss the term relevance. Note, that many notions of relevance have been discussed in the literature, and 
the discussion is ongoing. Hence, we briefly summarize the known dimensions that are important for our work and then add further 
new and specialized dimensions relevant to knowledge-infused AI. As relevance dimensions known from information retrieval (IR), 
we introduce topic, system, and situation for AI driving functions since these are important in our setting as well. We then introduce 
the dimension predictability, which originates from the field of AI. Finally, we define the new notion of ODD relevance.

The multi-dimensionality of relevance implies that “What knowledge is relevant to infuse into an AI controlling a driving function?” 
cannot be generally answered as such since it depends on multiple dimensions, such as the situation or the system. 

Information retrieval (IR) deals with the retrieval of information from data storage systems, e.g., databases. Relevance has been 
widely conceptualized and discussed in IR from the 1960s to 1990s [38–41], but the discussion is ongoing – also because the IR 
systems are evolving.

In IR, a user has an information need specified as a user query. The information retrieved by the IR system should satisfy this 
need. The fundamental question of IR is hence QIR:=“What information is relevant to satisfy a user’s information need?”. Relevance is 
considered a relation between the retrieved information and the information needed but is also influenced by other aspects, such as 
the user’s cognition or the system’s processing capabilities. Relevance is hence called multi-dimensional [40].

In our work, we are interested in the question QAI:=“What information is relevant for an AI driving function in a given traffic 
scenario?”. In contrast to IR, an information need results from the requirements that the AI (or rather the system the AI is part of) 
must satisfy. While in IR the user is a human, the user is an AI in our setting. Analogously to IR, many aspects of the AI’s context 
influence what is relevant – such as the current environment, the state of the system, or the current behavior of other road users.

More precisely, we are here concerned with the question QKI:=“What knowledge needs to be infused into an AI so that it masters its 
driving function and satisfies the requirements?”. Our focus is on the knowledge that an AI internalizes during its training. We investigate 
the relevance of infused knowledge.2 In our setting, the IR system becomes the knowledge base, which is the result of the previous 
development phases (Knowledge Identification and Formalization). While a user formulates a query in IR, the quest for information is 
done in Knowledge Identification by domain experts. In the context of AI driving functions, the need for information/knowledge results 
from the goal of satisfying the requirements. The dimensions of relevance most important for the work presented in this paper are 
summarized in the following.

Topicality. In IR, topicality is a relation, the topic match, between a topic of a query and a topic of a retrieved document (cf. [41,42]). 
Transferred to our setting, it is the relation between the topic of a requirement and the topic of knowledge. For example, topical 
relevant for satisfying the requirement “Keep a distance between 2-15 meters to a static obstacle” is knowledge about the vehicle’s 
physical dynamics, in particular the effects of deceleration.

System Relevance. System relevance is a relation between a requirement, the knowledge, and the system (that is, a specific AI 
model in a vehicle). This notion is inspired by the notion of system relevance from IR, which refers to the relation between a query, 
the retrieved document, and the internal organization of a system (cf. [43,42]). The AI’s architecture, number of neurons, activation 
functions, etc., and also the training data set, duration, and training method influence a trained AI’s performance. The notion of 
system relevance emphasizes that these factors influence what is relevant. For instance, after training, we have a different system, 
and for this system, new knowledge becomes relevant, given that it has internalized the initial knowledge.

Situational relevance. In IR, situational relevance emphasizes that the current situation in which the user is in (cf. [44,40]) influences 
what is relevant. The influence of the situation on the relevance is certainly high, considering driving functions. To reflect this influence 
more accurately, we define a specialized notion of situational awareness below.

Predictability. Predictive relevance refers to the importance of a data point or pattern contributing to accurate predictions when 
training an AI model [45]. In this work, we are interested in a related notion. We instead are targeting formally specified knowledge 
that can drive the generation of data sets.

In this paper, we are concerned with AI models controlling driving functions. These driving functions are developed for a certain 
operational design domain (ODD). If the domain is exited at runtime, a different function (or the user) takes over. The ODD limits 
the situational dimension and thus influences what knowledge is relevant.

When we want to characterize what knowledge is relevant for the infusion operation, we have to consider that the relevance of 
knowledge is always influenced by the initial model M𝑖 into which knowledge is going to be infused, the integration means I, and 
the training process P𝑡 (see Section 3.1).

Notion (ODD-relevance). ODD-relevance is a relation between a requirement R, a model M𝑖, and knowledge K. We say that the 
knowledge infusion operation ⊙ is ODD-relevant for M𝑖, if

• M𝑖 does not satisfy R in the ODD.
• We can infuse K into M𝑖 (i.e. find I and P𝑡 and apply ⊙), so that
• the resulting trained model M𝑛 =⊙ (M𝑖,K,I,P𝑡) satisfies R in the ODD.

2 Knowledge means information validated by, e.g., experiments, studies, or experts [10].
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For example, knowledge K of how to calculate safety distances when it rains will usually be ODD-relevant for a road vehicle, the 
requirement R =“Keep a distance between 2-15 meters to a static obstacle” and to a model M𝑖 still lacking specific knowledge about how 
to compute the safety distance when it is raining. Note that the above notion requires that we can infuse knowledge, which means 
the notion requires the existence of I,P𝑡 such that the trained model satisfies R.

The above notion calls a sufficient knowledge infusion relevant. It does not require minimal knowledge; that is, we might be able 
to infuse a less informative K′ into M𝑖, resulting in model M𝑛′ that satisfies R as well.

Similarly, a knowledge infusion might not be ODD-relevant but partly ODD-relevant. We call a knowledge infusion partly ODD-
relevant if the retrained model M𝑛 does not satisfy the requirement R but is strictly more successful than M𝑖 wrt. R. More formally, 
let R𝑖 be the requirement satisfied by M𝑖 with R⇒ R𝑖. If M𝑛 satisfies R′ and R⇒ R′ and R′ ⇒ R𝑖, we call the knowledge-infusion partly 
ODD-relevant.

4.3. Assessment of relevance: testing for relevance indications

Along with discussions of “What is relevance?” the question of “How to measure relevance?” has been discussed. Schamber et 
al. stated “[...] Relevance is a complex but systematic and measurable concept if approached conceptually and operationally[...]” [41] in 
1990 referring to relevance in information retrieval. The multiple dimensions of relevance, as mentioned in the previous section 
(the internal realization of the system, its current state, the user’s cognitive abilities, the situation etc.), make it difficult to measure 
relevance precisely because some dimensions are not directly observable.

In Section 4.3.1, we discuss the challenges of measuring the relevance of knowledge in our setting. In our opinion, the key 
challenges are

(i) ODD-relevance refers to the performance of the AI system in the real world,
(ii) whether knowledge is relevant also depends on the knowledge infusion operation and, hence, on M𝑖, I and P𝑡, and in particular
(iii) the effect of knowledge infusion is doxastic (see below) and hard to assess since, more often than not, it changes a black box 

system.

In Section 4.3.2, we define the notion of Scenario-relevance Indication. This notion derives relevance indications from the runs of an 
AI that are observed when executing a test suite of a given scenario. The notion links efficiently computable (i) relevance indications 
and (ii) ODD relevance via the established approach of executing scenario-based test suites.

4.3.1. Assessing the doxastic effect of knowledge infusion

In order to explain the difficulty of measuring the relevance of infused knowledge, we describe the doxastic (referring to beliefs 
in the sense of doxastic logic) effect of knowledge infusion. Therefore, we distinguish between the real world, i.e., the application 
domain, and the internal world model of the AI system, in terms of which the AI expresses its beliefs.

In a nutshell, an AI system makes decisions based on its beliefs, which are built based on observations and its knowledge about the 
world. Knowledge infusion causes an AI model to change its beliefs or even the internal world model.

Fig. 3 illustrates the effect of knowledge infusion on the AI’s beliefs that result in observable real-world behavior. The Venn 
diagrams show set relations of real-world behavior at the top and “believed” behavior at the bottom. Let us assume we have a model 
M𝑖 that does not (entirely) satisfy its requirements R, denoted as 𝕄i ⊈ℝ.

The top of (a) shows M𝑖 in terms of its behaviors within its environment. Some of M𝑖 ’s behaviors satisfy R, but not all. During 
its initial training, M𝑖 has deferred from the training data some knowledge K𝑖 about the environment and the requirements it must 
satisfy. The bottom of (a) depicts M𝑖’s beliefs about its environment and requirements. These do not perfectly match with the reality 
(top). We assume here that M𝑖 “believes” to satisfy the requirement (bottom), but it does not satisfy the requirements in the real world 
(top).

(b) illustrates the infusion of relevant knowledge that causes M𝑛 to build new beliefs and thus causes M𝑛 to satisfy the requirement 
R, 𝕄n ⊆ℝ. At the bottom, the new beliefs about the environment and requirements are depicted, which now match better with reality 
(at the top). Note that M𝑛 “believes” in (a) and (b) to satisfy the requirement (bottom), but since only in (b) belief and reality match 
better, it actually satisfies the requirement in the real world (top). 

The bottom line is that knowledge changes an AI’s internal beliefs, and consequently, it behaves differently in the real world, 
reacting to its perceived environment. These changes are complex to assess,3 but they determine whether a model can generalize or 
is overfitted. For black box models, we can only monitor the AI’s observable performance to infer whether knowledge K has been 
infused (see Section 6, Knowledge Infusion Test), whether M𝑛 loses valuable knowledge of the initial model M𝑖 (see Section 6, 
Knowledge Preservation Test) and whether K causes the AI to satisfy the requirement R (see Section 6, Requirement Sat-
isfaction Test).

However, as discussed in Section 3.2, the whole system behavior cannot be explored. Instead, simulations of test scenarios (i.e., 
scenarios of a test suite) that cover the ODD are executed and monitored. Hence, we derive indicators that indicate relevance but 
cannot guarantee it. However, given good coverage of the ODD and a well-chosen test suite for each scenario, the relevance indicators 
are an efficient way to derive relevance within an established development process.

3 there is ongoing research to self-explainability of AI.
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Fig. 3. Effect of knowledge infusion. Knowledge infusion changes the beliefs the AI builds (bottom) and, in turn, changes its behavior in the real world (top). 

Above, we explained the doxastic effect in terms of the conceptual framework for the relevance of safety-critical autonomous 
systems as used in [47]. While Rakow in [47] is mainly concerned with the question “What knowledge and observations of the world are 
relevant for a given system (with a certain belief space) to accomplish its mission successfully?” focusing on the design of information 
retrieval capabilities, we are here interested in “What knowledge is ODD-relevant to infuse into an AI model so that it satisfies the 
requirement R of the driving function?” and hence focusing on the training phase and its evaluation.

4.3.2. Scenario-relevance indication

Since we cannot explore all behaviors of an AI model within its ODD, we derive indications from running test suites of scenarios 
in our simulations. As discussed in Section 3.2, the scenarios and their test suites for a given requirement R are specified by a test 
engineer.

Recall that we say M𝑖 satisfies R vbt in Scen, if M𝑖 satisfies R in all runs of the test suite of the scenario Scen (cf. p. 6). Otherwise, 
we say M𝑖 does not satisfy R vbt in Scen.

Notion (Scenario-relevance Indication). Let a requirement R, a model M𝑖, a scenario Scen, and a test suite 𝒮 be given.
We say that we have an indication that the knowledge K is relevant for M𝑖 to satisfy R in the scenario Scen, if

• M𝑖 does not satisfy R in Scen vbt,
• we can apply a knowledge infusion to M𝑖 (i.e. we find I and P𝑡 and apply ⊙), such that
• the resulting model M𝑛 =⊙(M𝑖,K,I,P𝑡) satisfies R in the scenario Scen vbt.

This notion bridges the real world and scenario-based testing. We have found a scenario-relevance indication when we can verify 
by testing that the knowledge infusion of K makes M𝑖 satisfy the requirement R. Next, we discuss how to derive ODD-relevance 
indications from scenario-relevance indications.

Scenario relevance indications and knowledge bases for ODDs Knowing whether a given piece of knowledge is scenario-relevant is 
already valuable. However, to build up a knowledge base, our ultimate goal is to determine whether certain knowledge K is ODD-
relevant. A scenario-relevance indication of K can, as such, be considered an indication of ODD-relevance as well, given that the 
scenario is part of the ODD. How strong this indication is certainly depends on the test suite and the fit between simulation and 
real environment. Both aspects are common hurdles that are faced as part of the design process. We envision that indications can be 
collected and that, over time, more precise specifications of relevant knowledge will hence become available, and stronger indications 
can be derived by agglomeration.

The notions of ODD-relevance (cf. p. 8) and scenario-relevance (cf. p. 10) both assume that an infusion operation can be applied to 
infuse K i.e., ⊙ (M𝑖,K,I,P𝑡) where M𝑖 is the initial model, I the means of integration and P𝑡 the training process. A database of relevant 
knowledge K could catalog tuples (M𝑖,K,I,P𝑡,R,𝒮), i.e., the infusion operation, the requirement, and the test suite. When using the 
database, the similarity between AI models, knowledge infusion operation, and requirement has to be judged, and the strength of 
indication can be derived from the test suite 𝒮. It is out of the scope of this paper to discuss all these issues. However, the user should 
be aware that although relevance indications will lead to a more focused knowledge search and retrieval, the knowledge base must 
be used, considering these aspects.

Given a requirement, a systematic approach to determining an initial AI model and a systematic procedure for the knowledge 
infusion operation will strengthen the meaning of relevant indications for the newly developed AI. To this end, we present a systematic 
approach for knowledge infusion in Section 5.

Science of Computer Programming 244 (2025) 103297 

10 



D. Grundt, A. Rakow, P. Borchers et al. 

Fig. 4. Overview of our contribution as in Fig. 1 with the table of contents of Section 3.2 and the employed TSC tool & research landscape. 

Fig. 5. A TSC of three snapshots. The first snapshot is a True Chart, which expresses that anything may happen for an arbitrary non-zero amount of time. The second 
snapshot expresses that the ego car faces an obstacle (object with velocity zero) with a distance of 150 to 200 m. Then the ego car has a distance of at most 200 m.

5. Systematic derivation of abstract knowledge scenarios

As illustrated in Fig. 4, our testing procedure to determine whether infused knowledge is relevant uses abstract knowledge sce-
narios. These knowledge scenarios combine requirements and knowledge. In this section, we explain how we construct the abstract 
knowledge scenarios and how they are used within our testing procedure to guide the data selection and training and to derive 
runtime monitors. The key to these benefits is using the formal specification language. We have chosen Traffic Sequence Charts [24], 
which provide a visual, formal, and intuitive specification language that also allows the employment of a rich tool landscape. We 
next give a brief introduction to TSCs 

5.1. Traffic sequence charts

TSCs are a formalism to specify spatio-temporal logic properties in terms of sequences of constraints. TSCs use a time model 𝕋 , 
which allows the specification of traffic scenarios with continuous and discrete time semantics. Each constraint holds for a non-empty 
time duration, and consecutive constraints hold contiguously. Their most used visualization is called Spatial View (SV). A spatial view 
snapshot formalizes a conjunction of propositional constraints and focuses on an intuitive visualization of the spatial aspects. A TSC 
(specification) basically is a sequence of SVs. A simple example is given in Fig. 5. Below, we explain this more precisely.

Basic and composed charts In order to specify constraints on a trajectory4 in different phases of a traffic scenario, there is the concept 
of Charts.

The simplest one is the so-called Basic Chart, which contains an Invariant Node. In our context, the Invariant Node shows a Spatial 
View (SV) so that it specifies propositional constraints that invariantly hold over a period of time, i.e., for the interval [𝑏, 𝑒] ⊆ 𝕋 . In 
Fig. 5, the invariant of the second snapshot specifies “ego car is facing an obstacle and has a distance of 150 − 200𝑚”. A Basic Chart 
thereby describes properties of trajectories (or concrete traffic scenarios) over the underlying world model W (cf. Section 3). A True 
Chart is a special form of Basic Charts. It specifies that any behavior is allowed within a non-empty interval. It is visualized as a gray 
hatched rectangle (cf. the first snapshot of Fig. 5).

To specify more complex abstract traffic scenarios, Basic Charts are composed of more complex structures using operators (Se-
quence, Concurrency, Choice, etc.). We call these Composed Charts. Fig. 5 shows a Composed Chart of three Basic Charts. 

Premise A Premise can be combined with a Composed Chart to express, e.g., an implication. Implications are particularly suitable 
for the specification of requirements and scenario-relevant knowledge in combination with scenario-based development. A Premise 
can have just a History or a History and Future, which can be a Composed Chart. We call the former History-implies-Consequence(HiC) 
and the latter History-and-Future-imply-Consequence(HaFiC). A first example of a HiC is given in Fig. 6 on page 14. The semantics and 
visual syntax of HiC and HaFiC are summarized in Table 3. For more details, we recommend the introductory paper [24].

4 Recall that a trajectory is an assignment of values to all attributes of a finite set of objects at each point in time 𝑡∈ [0, 𝑙) (cf. Section 3).
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Table 2
Notation, semantics and visual syntax of Basic Charts.

Name Notation Semantics Visual
(𝐶 =) (𝐶 satisfied on 𝜏 from 

time 𝑏 to 𝑒 iff)
Syntax

Invariant Node of a Spatial 
View sv

[𝑠𝑣] 𝑒 > 𝑏 and sv satisfied 
by 𝜏(𝑡) for all 𝑡 ∈ [𝑏, 𝑒]

Sequence of Basic Charts 𝐶1
and 𝐶2

(𝐶1;𝐶2) ∃𝑚 ∈ [𝑏, 𝑒]: 𝐶1
satisfied by all 𝜏(𝑡), 
𝑡 ∈ [𝑏,𝑚], and 𝐶2
satisfied by all 𝜏(𝑡), 
𝑡 ∈ [𝑚, 𝑒]

Concurrency of Basic Charts 
𝐶1 and 𝐶2

(𝐶1&𝐶2) 𝐶1 satisfied by 𝜏
within [𝑏, 𝑒] and 𝐶2
satisfied by 𝜏
between on [𝑏, 𝑒]

Choice of Basic Charts 𝐶1 and 
𝐶2

(𝐶1|𝐶2) 𝐶1 satisfied by 𝜏
between [𝑏, 𝑒] or 𝐶2
satisfied by 𝜏
between [𝑏, 𝑒]

Negation of Basic Chart 𝐶1 !𝐶1 between [𝑏, 𝑒] 𝐶1 is 
not satisfied by 𝜏

Basic Chart 𝐶1 with Duration 
Constraint ⋈ 𝑑

⋈ 𝑑(𝐶1) 𝑒− 𝑏⋈ 𝑑, 
⋈∈ {<,>,=} and 𝐶1
satisfied by 𝜏 on [𝑏, 𝑒]

Table 3
Syntax and semantics of a TSC with activation mode always.

Name Semantics Visual Syntax
(satisfied by a trajectory 𝜏 of length 𝑙 iff)

HiC-TSC with Basic Charts history 
𝐻 and consequence 𝐶

∀0 ≤ 𝑏 ≤𝑚 ≤ 𝑙 ∶𝐻 satisfied on 𝜏 between 𝑏
and 𝑚⇒ ∃𝑒 ≥𝑚 of the 𝜏: 𝐶 satisfied on [𝑚, 𝑒]

HaFiC-TSC with Basic Charts 
history 𝐻 , future 𝐹 and 
consequence 𝐶

0 ≤ 𝑏 ≤𝑚 ≤ 𝑒 ≤ 𝑙 ∶𝐻 satisfied on 𝜏between 
𝑏,𝑚 and 𝐹 is satisfied on 𝜏 between 𝑚, 𝑒⇒ 𝐶

satisfied on 𝜏between 𝑚, 𝑒

Activation mode In this paper, we use a slightly simplified version of TSCs and omit the so-called bulletin board.5 We thus mention 
the activation mode of a TSC separately here. The activation mode specifies when the chart constraints of the TSC must hold on a 
trajectory 𝜏 .6 Any chart constraint 𝐶 must be satisfied at all times 𝑡 between a begin time point 𝑏 to an end time point 𝑒, i.e. 𝜏(𝑡)
must satisfy 𝐶 for all 𝑡 ∈ [𝑏, 𝑒]. If the activation mode is initial, the TSC has to hold initially; that is, the chart constraints must hold 
from 𝑏 = 0 and up to a time point 𝑒 greater 𝑏. If the activation mode is always, the chart constraints must hold along 𝜏at all 𝑏 ∈ 𝕋 , 
and for each 𝑏, there has to be an end time 𝑒 greater 𝑏.

5.1.1. TSC scenarios & TSC tooling

A TSC specifies an abstract scenario, i.e. it represents an arbitrary number of concrete scenarios (i.e. trajectories of the underlying 
world model).

As illustrated in Fig. 4, we use our test procedure and TSC tooling to derive concrete scenarios. These scenarios can be used for 
training during knowledge infusion and for testing, which is our focus. The approach of Becker et al. [48] allows to derive concrete 
scenarios from abstract TSCs specifications. A more detailed description of the implementation with a focus on generating reasonable 
test suites can be found in [46]. Thereby, it is possible derive concrete scenarios in the form of ASAM OpenX [49] files, which are 
directly simulatable, e.g., in simulators such as CARLA [50].

Also illustrated in Fig. 4, we employ runtime monitors that observe whether the requirement R is satisfied and whether the 
knowledge is infused. Grundt et al. presents in [32] how these monitors can be derived from a TSC. A more detailed description of 
the implementation focusing on the runtime monitoring of complex system requirements is submitted in the same special issue as 
this work.

5 It declares, for instance, objects and the activation mode of a TSC.
6 i.e. a concrete run of the W (or simulation engine, respectively), cf. Section 3.3.
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Table 4
Overview of Introduced Denotations.

Name Role Description

R requirement implication of the form “Rdesc ⇒ Rcons”;
intuition: in the cases Rdesc, Rcons required;
given as HiC- or HaFiC-TSCs

Rdesc R’s premise premise of the requirement R, given as TSC, describes the cases where Rcons is required
Rcons R’s consequence consequence of requirement R, given as TSC, describes what is required (in the given cir-

cumstances Rdesc)

M𝑖 initial AI model initial AI model trained to satisfy R
M𝑛 retained AI model M𝑛 evolves from M𝑖 by retraining with the goal of infusing knowledge K

K knowledge to infuse M𝑛 is M𝑖 being retrained with K to satisfy R;
we assume that K has the form of Kreq

Kreq knowledge req. implication of the form “Kdesc ⇒ Kcons”;
intuition: in the cases Kdesc, Kcons required;
given as HiC- or HaFiC-TSCs

Kdesc Kreq ’s premise premise of the knowledge Kreq; describes the cases that have been identified as critical
Kcons Kreq ’s consequence consequence of the knowledge Kcons; describes the required constraints that have to be 

accomplished in the critical cases Kdesc

Their intuitive visual specification is a major benefit of TSCs for Knowledge Identification and Formalization. In [25], TSCs have 
hence already been used to specify and formalize system requirements as well as for the purpose of knowledge specification for 
knowledge infusion of AI [14]. An intuitive visualization fosters communication among experts of different disciplines and hence 
allows for cross-checks. Considering the responsibility shifts from humans to AI, further and new experts will be involved in the 
system development. These experts are likely not to comprehend temporal logical formulae easily. Thus, the visualization enables 
the experts to diagnose incorrect knowledge specifications.

5.2. Abstract knowledge scenarios in the test procedure

This section gives an overview of the testing procedure based on a running example. It prepares the more detailed presentation 
in Section 5.3, where we describe the systematic derivation of abstract knowledge TSCs.

In Section 5.2.1, we illustrate that we infuse environmental descriptive and requirement knowledge. Both specification styles will lead 
to knowledge TSCs Kreq and Kdesc that will be used in our testing procedure. We discuss these knowledge specification styles based 
on a running example. This example will be treated more formally in the following sections. In Section 5.2.2, we sketch how the 
testing procedure uses the TSCs Kdesc, Kreq, R, and TSC tooling to establish whether a given knowledge is relevant.

5.2.1. Knowledge scenarios and knowledge infusion

When an AI model M𝑖 fails to satisfy its requirements R, the infusion aims to make the retrained AI model M𝑛 satisfy R. For the 
following, we assume that knowledge K has been identified as relevant and has been formalized in the previous phases Knowledge 
Identification and Knowledge Formalization. In the following, we consider the case that retraining of M𝑖 will use training data that 
represents K.

For the following, we assume, moreover, that R is given as HiC- or HaFiC-TSCs. For simplicity and without loss of generalization, 
assume that K has the form of Kreq and is also a HiC or HaFiC-TSC. We refer to R’s Premise as Rdesc and to its Consequence as Rcons. 
Likewise, we refer to K’s Premise as Kdesc and to its Consequence as Kcons. Table 4 gives an overview of the used denotations. 

Example. (Requirement, Knowledge & Model) As a running example, let us consider the requirement R =“Always stop in a distance 
of 2-15 meters to a static obstacle”. Let us assume that the initially trained model M𝑖 that does not satisfy R. It especially violates R
in scenarios where the friction is decreased due to rain. Further, we assume that inspection of the training data shows that these 
scenarios were under-represented.

For our approach, the knowledge can simply state Kenv =“At some times it is rainy”. It could also specify required behavior in 
terms of Kreq=“If it is rainy, brake taking the reduced friction into account”. We choose to consider Kreq here. In order to infuse Kreq
into M𝑖, we enrich the training data set by synthesized concrete scenarios where it is rainy. In the case of Supervised Learning, we 
label concrete scenarios where Kreq holds as positive and scenarios where Kreq is violated as negative. In the case of Reinforcement 
Learning, we choose an appropriate reward function [14] that rewards sufficiently early breaking on rainy roads. □

We differentiate between specifying descriptive knowledge, Kenv, about the environment (env-desc) and specifying knowledge 
regarding the required behavior, (req). Both specification styles (env-desc) and (req) work for our approach and we can unify 
them by deriving a knowledge specification Kdesc that characterizes the scenario context and knowledge specification on a (refined) 
requirement Kreq.
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Fig. 6. Requirement: “Always stop at a distance between 2-15 meters to a static obstacle.”. 

Fig. 7. Knowledge Kreq : “Always if it is rainy and the friction is then reduced, brake taking the reduced friction into account.”

In our running example, the unification leads to the same two knowledge scenarios for both knowledge styles, (env-desc) and 
(req). We derive that we have to infuse the knowledge Kdesc =“There are scenarios where it is rainy” and scenarios that illustrate 
Kreq =“If it is rainy, then brake and take the friction into account”.7

5.2.2. Testing for relevant knowledge

In order to answer “Is K relevant for infusion M𝑖, so that the new model M𝑛 then satisfies requirement R?” our testing procedure in 
Section 6 does three tests Knowledge Infusion Test, Knowledge Preservation Test and Requirement Satisfaction 
Test. In this testing procedure, abstract TSC scenarios play a central role.

• The Knowledge Infusion Test checks whether knowledge K has been infused. To this end, we check whether M𝑛 satisfies 
the knowledge Kreq within the identified scenario context Kdesc. In other words, we check whether M𝑛 has grasped the refined 
requirement on the infusion training data compilation.

• The Knowledge Preservation Test checks whether M𝑛 looses valuable knowledge of the initial model M𝑖. To this end, the 
tests previously run on M𝑖 are rerun to check whether M𝑛 is a real improvement compared to M𝑖. In this test, the monitors for the 
initial requirement R are used to evaluate M𝑛 ’s performance.

• The Requirement Satisfaction Test checks whether K causes the AI to satisfy the requirement R specified as TSC.

Example. The requirement R of our running example can be specified via a HaFiC as illustrated in Fig. 6. The activation mode is 
Always. The first SV snapshot specifies the History of the Premise. It shows that the controlled car ego is in front of a static obstacle 
in its lane. The second snapshot of the Premise specifies the future. It will be at a distance of less than 200 m, i.e., still in front of 
the obstacle on the same lane. The third and the fourth snapshot build the Consequence. It expresses that (if ego starts facing the 
obstacle and will stay there, then) ego must eventually come to a stand-still at a distance of 2-15 meters from the obstacle. The third 
snapshot is a True Chart encoding “eventually”.

The knowledge Kreq can be specified via HaFiC-TSCs as visualized in Fig. 7. The activation mode is Always. The first SV snapshot 
in the Premise expresses that it is raining within ego’s environment. While the second SV snapshot in the Premise expresses that ego’s 
friction is reduced and a static obstacle is close by. The Premise hence expresses that first, it is raining, and then ego approaches 
a static obstacle while the friction is reduced. The Consequence snapshot expresses that then ego has to start braking, taking into 
account the reduced friction. □

5.3. Derivation of abstract knowledge scenarios

In Section 5.3.3, we describe the general process of using TSCs to specify abstract knowledge scenarios for knowledge infusion and 
relevance testing. But before that, we list assumptions that we make for the relevance testing procedure (Section 5.3.1) and explain 
how we can check whether these assumptions hold (Section 5.3.2).

5.3.1. Assumptions for the relevance testing procedure

For our testing procedure, we assume that the AI model is developed in a process where knowledge identification and knowledge 
formalization have already been made. We assume to have an initial model M𝑖 and a retrained model M𝑛, requirements R, infused 
knowledge K, and a scenario Scen for which the models are trained. We assume that R, K, Scen are specified as TSCs. We use the 
denotations as in Table 2, p. 12, and Table 4, p. 13. We moreover make the following assumptions:

7 For (env-desc), Kreq is derived by combining Kdesc and R.
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Fig. 8. Abstract Knowledge TSC. Composition of the additional requirements Kreq and requirement R to describe the refined requirement for M𝑛 . 

(Impl) Given requirements are formalizable as HiC or HaFiC TSCs. 
We assume that requirements are formalized as TSCs in form of implications; that is, the resulting TSC is a HiC- or HaFiC-TSC 
with activation mode always.8

(Scen) The knowledge is formalizable and considers a subscenario of Scen. 
In knowledge identification and formalization, knowledge that is potentially scenario-relevant is identified that is supposed to 
lead M𝑖 to satisfy R. Therefore, knowledge Kdesc identifies additional constraints on the scenario Scen.

(Ego) The Consequences of both requirement specifications R and Kreq specify the expected behavior of the ego vehicle.
(Ref) Kreq does not contradict R. 

We assume the additional requirement Kreq does not contradict the initial requirement R. Since Kreq should lead to M𝑛 to 
satisfying R, their conjunction, R and Kreq, should refine R.

Note that based on these assumptions, we assess the relevance of infused knowledge for a given AI model.

5.3.2. Abstract knowledge scenarios for testing requirement refinement

In this section, we describe how to check whether (Scen) and (Ref) holds. Since errors in the formalization of K can happen, 
these checks can provide feedback to the Knowledge Formalisation Phase.

To ensure “The knowledge Kdesc considers a subscenario of Scen” (Scen), we examine we can synthesize concrete scenarios that satisfy 
knowledge scenario Kdesc as well as the scenario Scen.9 Therefore we use a world model W10 that generates only concrete scenarios 
of Scen. As the simulation engine can be seen as the world model in our context, it basically means that the simulator realizes a 
world as described by the abstract scenario Scen. We then check whether we can synthesize a concrete scenario satisfying Kdesc. If 
Kdesc is inconsistent with the scenario Scen, there is no concrete scenario ScenKdesc of world model W (or the simulation engine) 
satisfying Kdesc. We hence can use the synthesis approach of Becker et al. [48]. In our running example, we have the knowledge 
Kdesc=“Sometimes it is rainy.” If we mistakenly use a world model where it cannot rain, no concrete scenario is synthesizable for 
Kdesc.

To show “Kreq does not contradict R” (Req), we construct a TSC that composes Kreq and R, as described below and illustrated in 
Fig. 8. We then check whether the constructed TSC contains logical inconsistencies or physical implausibilities and check whether a 
concrete scenario can be synthesized [48].

Fig. 8 illustrates how the requirement R and knowledge Kreq, i.e. the additions to the requirement R, are composed. The top 
part thus abstractly specifies scenarios that satisfy the requirement R and satisfy R’s precondition. The bottom part analogously 
abstractly specifies scenarios that satisfy the knowledge requirement Kreq and satisfy Kreq ’s Premise. Recall that Kreq ’s premise is 
Kdesc comprising History and Future.

Since no triggering precondition is needed, the TSC of Fig. 8 does not have a Premise but is the Concurrency of two Composed 
Charts, R and Kreq. Both, R and Kreq of Fig. 8, start with a True Charts. At the top, the History Composed Chart of R (𝑅𝐻 ) is followed 
by the Concurrency of the Future of R (𝑅𝐹 ) and its Consequence (𝑅𝐶 ). The True Charts encode that we do not assume Kreq to be 
synchronized with R, but that it adds to R in some way.

8 Note that (Impl) assumes that the activation mode is always. We make this assumption to simplify the following presentation. It is also possible to consider the 
activation mode initial. The TSCs can be derived analogously.

9 If Kdesc allows scenarios outside of Scen, we use Kdesc ’:=Scen & Kdesc .
10 i.e., the world model underlying the TSCs cf. Section 5.1.
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Fig. 9. Abstract Knowledge TSC. Composition of the knowledge requirement Kreq and requirement R to describe the refined requirement for M𝑛 within the identified 
relevant subscenario.

Fig. 10. Derivation of abstract knowledge scenario for targeted retraining and testing. 

5.3.3. Abstract knowledge scenarios for testing relevant knowledge infusion

This section explains how we construct TSCs for the Knowledge Infusion Test. The Relevant Knowledge Infusion 
Test checks whether the knowledge infusion of knowledge Kreq into M𝑛 was successful, i.e. whether M𝑛 has grasped the requirement 
R and the knowledge requirement Kreq that was intended to be infused. To test this, we (i) construct a knowledge TSC combining 
Kdesc and Rdesc from which concrete scenarios for a (ii) test suite are synthesized, which are then monitored to establish whether (iii) 
M𝑛 behaves as required by Kcons and Rcons. Fig. 9 illustrates how the knowledge TSC is constructed. To construct the knowledge TSC, 
the requirement Rdesc and knowledge Kreq are composed via the Concurrency. In other words, R and Kreq are composed, ignoring 
their consequences Rcons and Kcons. We thus construct a TSC that encodes scenarios where M𝑛 is supposed to show the required 
behavior but does not limit the scenarios any further. It thus remains the obligation of M𝑛 to display the required behavior to satisfy 
the conjunction of Rcons and Kcons. We use the synthesis approach of Becker et al. [48] to derive a concrete test scenario. We then 
use the monitoring approach of Grundt et al. [32] to check satisfaction of the requirement(’s consequence), i.e. Rcons and Kcons.

Note that the same construction can be used to synthesize (re-)training data for an identified knowledge gap. Moreover, for 
Reinforcement Learning, Kcons can be integrated into the reward function of the training by reward shaping. The realization of 
Reinforcement Learning based on TSCs is described in [14] and is used within the case studies presented in Section 7.

Example. Let us consider the systematic construction for AI Training and AI Evaluation (cf. Section 2) for our running example. We 
have the system requirements specified via TSCs as given in Fig. 6 on p. 14) and we have the potentially relevant knowledge as 
illustrated in Fig. 7 on p. 14. Our systematic derivation of an abstract knowledge scenario combining both specifications is illustrated 
in Fig. 10. We can use this TSC for targeted adaption of AI Training environments and targeted AI Evaluation. □

5.3.4. Benefits of abstract knowledge scenarios

The presented abstract knowledge scenarios can be useful independent of our testing procedure. A targeted training hinges on 
a good compilation of the training data set. Therefore, the specification of the different knowledge scenarios of the training set is 
an important step. Provided we have a training set given and specified what abstract knowledge scenarios should be part of the 
training set, we can examine the coverage of knowledge scenarios and how balanced the training data is regarding the different knowledge 
scenarios. Moreover, when an initial AI model violates its requirements, testing whether the knowledge-infused AI model succeeds in 
the knowledge scenarios can now be tested and monitored easily using our abstract knowledge scenarios since a formalization forms 
the basis for automatable satisfiability checks. In addition, our formal abstract knowledge scenario specification can be checked for 
consistency. The formal basis also ensures a high level of tool interoperability. As shown in Fig. 13, for example, TSC specifications 
can be translated into the OpenX standard [51] to create the basis for selecting training and test environments or generating synthetic 
data. In addition, a formal specification helps communication between stakeholders as it has no room for multiple interpretations. 
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Therefore, by formally specifying requirements in combination with identified knowledge, we also address practitioners’ challenges 
C1 and C2 (cf. Section 4.1).

6. Relevance testing procedure

In the context of knowledge-infused AI, infusing relevant knowledge aims to yield an AI driving function that generalizes better 
and can cope better with unknown situations. Thus, it is expected to satisfy requirements more reliably. Consequently, the training 
is also expected to be faster and more cost-effective than solely data-driven machine learning.

Unfortunately, the path from Knowledge Identification over Knowledge Formalization to Knowledge Integration is rather long 
(cf. Section 2). Current training and evaluation methods do not indicate whether the identification and formalization of infused 
knowledge were correct, nor do they provide any concrete information on whether the identified knowledge was relevant to satisfy-
ing the corresponding requirement. We see the identification and the correct formalization as essential factors for creating beneficial 
knowledge bases for AI driving functions and developing efficient and robust knowledge-infusion approaches.

We present a testing procedure that determines scenario-relevance indications (cf. Section 4.3.2, p. 10) of whether identified and 
formalized knowledge is relevant for the AI. It thereby also helps to answer the question “Is the formalized knowledge beneficial for 
the AI driving function?”. Scenario-relevance indications examine whether a given knowledge is relevant to the initial model M𝑖 in the 
scenario Scen. Therefore, a test suite 𝒮 is executed.

6.1. Relevant knowledge infusion test procedure

For the reader’s convenience, we refer to Table 1 (page 6) for the denotations used in the following. We moreover refer to Table 4
and page 13 where the knowledge specification is discussed in more detail.

For the following, we denote with M𝑖 the initially trained AI model, which does not satisfy the requirement R.11 The AI model M𝑖
is trained further with data representing identified and formalized knowledge K in order to make it satisfy the requirement R. We call 
the retrained model M𝑛.

The to-be-infused knowledge K aims to fix the shortcomings of M𝑖. If M𝑛 implements K and does not forget what M𝑖 already knew, 
then it should satisfy R. As discussed in the previous section on p. 13, we assume that the potentially relevant knowledge K is specified 
as a requirement Kreq and formalized via HiC-TSCs or HaFiC-TSCs. The Premise of Kreq, also called Kdesc, describes a subscenario 
for which the consequence Kcons is required from the AI model. In our running example Kdesc =“It is rainy and the friction changes”, 
Kcons =“Brake safely and take the changed friction into account.” and Kreq =“If it is rainy and the friction changes, then brake safely and 
take the changed friction into account.”. 

In the following, we use the more intuitive term “behavior” instead of the more formal term trajectory.

6.2. Relevant knowledge infusion test

In this section, we first give an overview of our testing procedure and then explain it in more detail using our running example.
Fig. 11 gives an overview of our Relevant Knowledge Infusion Test. Basically, we test relevance with the notion in mind: 

“M𝑖 ̸⊧ R and M𝑖 ⊙ K ⊧ R⇒ K is relevant”. That is, if M𝑛 satisfies R, but M𝑛 without K, that is, M𝑖, does not satisfy R, we consider K
as relevant for R. Moreover, note that we usually cannot do exhaustive simulation, so that simulation will provide only relevant 
indications as discussed in Section 4.3 p. 10.

The Relevant Knowledge Infusion Test is to be used after the steps training and infusion have been performed, i.e. 
after the initial AI model M𝑖 has been trained to satisfy R but does not satisfy R and the new AI model M𝑛 has been trained by infusing 
K into M𝑖.

In order to derive indications of whether knowledge K is irrelevant, contradicting previous knowledge, or is partly relevant, we 
combine the outcomes of the three tests Knowledge Infusion, Knowledge Preservation and Requirement Satisfaction.

In the following, we use Table 5 to explain our testing procedure in more detail. We illustrate our testing procedure in Section 7. 
To simplify the discussion, we first pretend to simulate exhaustively; hence, in Table 5, we pretend to have set inclusion ⊆ rather than 
observed set inclusion ⊆𝒮 . We then discuss what the selective execution of test cases in simulation means for our testing procedure.

In column “K Infused” of Table 5, it is listed whether the new model M𝑛 behaves as required by K (𝕄n ⊆ 𝕂). This test checks 
whether M𝑛 internalized the provided knowledge K. Reasons for failing these tests may be the inadequacy of the training, the model 
itself or the knowledge.

Column “M𝑖 Preserved” lists whether M𝑛 preserves the successful behavior of the initial model M𝑖. To this end, we first determine 
the test runs where M𝑖 satisfies R. We then check whether, in all these cases, M𝑛 satisfies R. If this test fails, the knowledge infusion 
overwrote the knowledge K𝑖 that M𝑖 previously learned. Reasons may be that the model is not adequate (e.g., it may be too small to 
produce the complex behavior and hence forgets) or the training caused overfitting, or the initial knowledge K𝑖 may contradict the 
infused knowledge (e.g., the infused knowledge labels cases as appropriate for comfortable breaking while it was previously labeled 
as hard breaking).

11 In case there is no such model, we pretend that there is a model M∗ that non-deterministically chooses its actions.
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\* Initially given*\

• R, the requirement
• M𝑖 , the trained AI model which does not satisfy R; 
M𝑖 :=M∗ , if there is no initially trained model

• knowledge K that will be infused

\* Knowledge Infusion Training*\

• M𝑛 = M𝑖 ⊙ K, i.e.M𝑖 is further trained by knowledge infusion of K

\* Relevant Knowledge Infusion Test*\

1. Knowledge Infusion Test: Was K infused into M𝑛?
% It checks whether the attempt to infuse knowledge K via training 
% into AI model M𝑛 was successful. Formally, it is examined whether 
% 𝕄n ⊆𝒮 𝕂, i.e. whether the behaviors of M𝑛 satisfy the knowledge- 
% requirement K.

2. Knowledge Preservation Test: Are the successes of 𝕄i preserved?

% It checks M𝑛 ≥𝒮,R M𝑖 , i.e. whether the M𝑛 did not forget initial knowledge K𝑖 . Therefore 
% it checks, if M𝑛 satisfies R in all test cases for where M𝑖 satisfies R.

3. Requirement Satisfaction Test: Does M𝑛 satisfy the requirement R?
% It checks whether the M𝑛 is successful in all test cases of requirement 
% R. Formally, it is examined whether 𝕄n ⊆𝒮 ℝ, i.e. whether the 
% behaviors of 𝕄n satisfy the requirement ℝ.

return indications whether K is relevant/irrelevant/contradicting previous knowledge.

Fig. 11. Sketch of the overall Relevant Knowledge Infusion Test. 

Table 5
Overview of indications provided by the Relevant Knowledge Infusion 
Testing Procedure.

K Infused? M𝑖 Preserved? Req. R Satisfied? Indication 
𝕄n ⊈𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K consistent? 

M𝑛 adequate? 
training adequate?

𝕄n ⊈𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K consistent? 
M𝑛 adequate? 
training adequate?

𝕄n ⊈𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ not possible

𝕄n ⊈𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ K consistent 
(with K𝑖)?

𝕄n ⊆𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K consistent 
(with K𝑖,R)? |𝕄i ∩ℝ| < |𝕄n ∩ℝ| K partly relevant? |𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ| K irrelevant?

𝕄n ⊆𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ not possible

𝕄n ⊆𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K sufficient? |𝕄i ∩ℝ| < |𝕄n ∩ℝ| K partly relevant? |𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ| K irrelevant?

𝕄n ⊆𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ K scenario-relevant 

Column “Req. R Satisfied?” lists whether M𝑛 satisfies the requirement R. Possible reasons for failing this test (ignoring the previous 
tests) are inadequacy of the model, training process or data.

Combining the test results gives us stronger indications of the reasons for failing the three tests. We discuss the possible combina-
tions one by one in the following.

Row 1: Suppose we established that M𝑛 does not internalize the knowledge K, it does not preserve the successes of M𝑖, and it does 
not satisfy the requirement R. Since M𝑛 forgot what it initially knew (before knowledge infusing M𝑛 equals M𝑖) there is an indication 
that M𝑛 did learn something. Hence, problems in the training data i.e. the consistency of knowledge, should be examined; the model 
might also be inadequate. Since M𝑛 fails in cases where M𝑖 was successful, it is less likely that more training is beneficial.
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Row 2: Let us assume M𝑛 does not internalize K (i.e. does not satisfy K) but preserves the successes of M𝑖 and it does not satisfy the 
requirement R. We have no indication that M𝑛 learned something. Hence, the training data, the model, or the training might not be 
adequate. Additional information is needed to rule out some of these cases.

Row 3 and 6: These cases are listed for combinatorial completeness. They are not possible since if M𝑛 fails in some cases according 
to the preservation test (M𝑛 ≥𝒮,RM𝑖), then M𝑛 cannot satisfy R.

Row 4: Suppose we established M𝑛 does not internalize K, it preserves the successes of M𝑖 and it satisfies the requirement R. Since 
M𝑛 learned to satisfy R there is an indication that M𝑛 did learn something. Hence, problems in the training data, i.e., the consistency 
of knowledge, should be examined. The infused knowledge itself might be contradictory (which would mean that M𝑛 cannot satisfy 
K), or contradicting previously learned knowledge K𝑖. If e.g. EWC is used (cf. Section 3), and the latter becomes more likely.

Row 5: Suppose we established M𝑛 internalizes K, it does not preserve the successes of M𝑖 and does not satisfy R. Since M𝑛 has 
forgotten parts of K𝑖, there is an indication that M𝑛 did learn, but what M𝑛 learned is not enabling it to satisfy R. Hence, problems in 
the training data, i.e., the consistency of knowledge, should be examined. The infused knowledge K seems to contradict previously 
learned knowledge K𝑖. Whether or not the infused knowledge brings an improvement needs further analysis. We hence examine 
whether M𝑛 or M𝑖 perform better wrt. satisfying R. As a measure, we use the number of behaviors that satisfy R. If M𝑛 has more 
behaviors satisfying R, (at least part of) K might be relevant and K𝑖 might be inconsistent. The case “|𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ|”, i.e. that M𝑖
has not the right more behaviors satisfying R, indicates that K is not relevant.

Row 7: Suppose M𝑛 internalizes K, it preserves the successes of M𝑖 and does not satisfy R. Since M𝑛 has learned K there is an 
indication that M𝑛 did learn, but what M𝑛 learned is not enabling it to satisfy R. There is no indication that knowledge is inconsistent. 
Hence, whether the infused knowledge K is irrelevant or partly relevant should be examined. We hence examine whether M𝑛 or M𝑖
performs better wrt. satisfying the requirement R in terms of the number of behaviors that satisfy R. If M𝑛 has more, K might be 
relevant but insufficient, and further knowledge might be required. Note, that “|𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ|” in combination with M𝑛 ≥𝒮,R M𝑖, 
means |𝕄i ∩ℝ| = |𝕄n ∩ℝ|. The case indicates that K is not relevant.

Row 8: Suppose M𝑛 internalizes K, it preserves the successes of M𝑖 and satisfies R. This case indicates that K is scenario-relevant. 
Note that K is sufficient does not imply that all of K is necessary. There can be less specific knowledge K’ also conveying sufficient 
knowledge with 𝕂 ⊆𝕂′.

Non-exhaustive exploration in simulation For practical reasons, a limited number of test cases are usually simulated. The coverage 
criteria and selection of test cases are part of the test design, which is done by test engineers. Criticality of the respective requirements, 
complexity of the system, and experience influence what test cases will be executed. To show that 𝕄 ⊄𝕄′ a single counter-example 
suffices, while showing 𝕄 ⊆ 𝕄′ would require exhaustive exploration of all elements of 𝕄. This means that, e.g., in the row 5 
with 𝕄n ⊆𝒮 𝕂 we could have M𝑛 ⊈𝒮 𝕂 as well and hence face the case of row 1. Our algorithm ignores this aspect, trusting on an 
appropriate coverage. The key to using relevance indicators is to be aware of this limit. Databases that maintain relevant knowledge 
should document the coverage criteria, and additional tests should be done if more evidence is needed.

Relevance notions While rows 1-4 indicate that K is irrelevant for this trained model in this scenario, only rows 5-8 specify cases 
where indications can be derived that K is partly relevant. Only in row 8 we can derive that K is sufficient to satisfy the requirement 
R, while in rows 5 and 7, part of K may be partly relevant, i.e., there are indications that K is improving the behavior of the AI model 
but that K is not sufficient. Our testing procedure does not aim to determine the least required knowledge but leaves it open to the 
test engineers whether they want to determine the least knowledge. Since the coverage in simulation and the model-world gap induce 
uncertainties into the indicators, a systematic search for the lesser knowledge should be driven by domain knowledge.

7. Evaluation and application of relevance testing procedure

This section aims to demonstrate the overall approach (cf. Fig. 4), which supports research and industry addressing the question 
RQ (motivated in Section 1 and Section 4.1:

RQ: Is the infused knowledge relevant for an AI model to fulfill its task?

To this end, the presented examples illustrate how different types of knowledge for safety requirements are formalized, infused 
and evaluated regarding their relevance for the considered initial AI model. In addition, the selected examples show (i) that the 
evaluation of relevance provides additional insights into the infused knowledge, namely that the knowledge is relevant and not, e.g. 
purely statistically correlated, and (ii) how the relevance indications provide (causal) feedback as to why the contribution of relevant 
knowledge was not successful.

For the first example, we used a prototypical reinforcement learning framework developed for the TSC language [14]. The other 
two examples are theoretical and intended to demonstrate our approach’s versatility and generalizability.

7.1. Safe braking example

For the first example, we consider the requirement

R1 The system should maintain a safety distance of at least 2m and up to maximum distance of 15m from a static obstacle
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and trained a Reinforcement Learning (RL) agent for R1.

7.1.1. Training specifications

For the training, we used a prototypical RL framework from [14]. We used a soft actor-critic algorithm, the Stable-Baseline3 [52] 
and Gymnasium [53] for the training environment. Vehicle dynamics in the environment are modeled using the well-known kinematic 
bicycle model [54]. The differential equations as in [14] were used for the dynamics of the agent system called ego:

�̇�ego = 𝑣ego cos(𝜃ego), �̇�ego = 𝑣ego sin(𝜃ego),

�̇�ego = 𝑣ego
tan(𝛿ego)
𝐿 

, �̇�ego = 𝑎ego,
(1)

with a two-dimensional position for ego (𝑥ego , 𝑦ego) and obstacle (𝑥obs, 𝑦obs), a yaw heading 𝜃ego and a velocity 𝑣ego (𝜃obs and 𝑣obs
respectively). 𝐿 = 3.1 m denotes ego’s wheelbase, while in the environment, the lane has a constant width of 4m and a fixed position.

We enrich the kinematic model for the experiment by a friction coefficient (cf. Equation (2)).

𝐹𝑁 = massego ⋅ 𝑔,

𝐹𝑟 = 𝜇 ⋅ 𝐹𝑁,

𝑎_frictionego =
𝐹𝑟

massego
,

𝑎ego = 𝑎ego + (−𝑎_frictionego),

�̇�ego = 𝑣ego + 𝑎ego ⋅Δ𝑡

(2)

We first calculate the normal force 𝐹𝑁 with the gravitational acceleration 𝑔 and the mass of ego massego. We use massego =1700 kg. 
We calculate the frictional force 𝐹𝑟 with a friction coefficient 𝜇 and 𝐹𝑁 . The frictional delay can be calculated with 𝐹𝑟 and massego. 
The effect of the friction coefficient 𝜇 on the deceleration 𝑎ego can be calculated using the negated friction delay.

Since the agent selects 𝑎ego in the action space, the velocity in the next time step �̇�ego is calculated in the kinematic model as a 
function of 𝑎ego, the current velocity 𝑣ego and Δ𝑡. The friction coefficient 𝜇 is considered by our extension in 𝑎ego and is therefore 
included in calculating the velocity at time 𝑡+Δ𝑡.

Observation and action space Given the requirement R1 and the respective TSC specification depicted earlier in Fig. 6, we assume an 
observation space of the agent, which only contains the distance between the agent system ego and the static obstacle obstacle, and 
the velocity of ego.

The action space of the agent contains the acceleration of ego. The acceleration of ego, 𝑎ego , can range from −7m∕s2 to 4m∕s2. We 
assume that obstacle is positioned in ego’s lane. Due to the given observation space and actions space, we have set the input parameter 
for the steering angle 𝛿ego and 𝜃ego in Equation (1) constant in the middle of the lane and straight in the direction of obstacle for the 
training.

Reward function We perform reward shaping for requirement R1 with two terms for the first training session:

𝑥obs − 𝑥ego > 2 m,

𝑥obs − 𝑥ego <𝑚𝑎𝑥(15 m, 𝑣ego).
(3)

The first term enforces a safety distance of 2m to be maintained. The second term states that the agent should maintain a maximum 
distance equal to 𝑣ego at high speed or a maximum of 15m. When these terms are taken into account, an appropriate safety distance 
to a stationary obstacle can be maintained without ego being able to stand any distance away for a high reward and at the same time 
maintain the safety distance of 2m. Within the specified lower and upper limits for the distance, the reward (between 0 and 1) is 
calculated as a function of ego’s speed using the modified sigmoid function Equation (4).

reward(𝑓 ) = 𝑐 ⋅
(

1 
1 + 𝑒𝑏⋅(𝑓+𝑎)

)
+ 𝑑 (4)

The constant parameters 𝑎, 𝑏, 𝑐, and 𝑑 can be chosen according to the desired distribution of the reward, we used 𝑎 = 10, 𝑏 = 0.25, 
𝑐 = 1, and 𝑑 = 0. Here, 𝑎 determines the distance to the inflection point, 𝑏 determines the function slope, 𝑐 determines the maximum 
reward and 𝑑 is the minimum reward. The function 𝑓 represents the value evaluated in each training step according to Equation (3).

Training setting The ego agent is trained in episodes with distances ranging from 70m to 100m to obstacle, and starting speeds 
between 10m∕s to 30m∕s. The agent is trained in 1 million steps, approximately 4000 episodes, with a learning rate of 0.02.

7.1.2. Example 1 - verification of M𝑖
After training, the agent was tested regarding requirement R1. The results show it does not satisfy R1 in all tests (cf. Section 4.3.2), 

i.e.M𝑖 does not satisfy R in Scen vbt.
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Fig. 12. Test results of a trained agent M𝑖 . The agent was able to satisfy requirement R1 in test runs with a prevailing friction of 0.8 - dry road (triangles). In test runs, 
in which the prevailing friction is 0.4 - wet road (squares) or 0.2 - icy road (circles), the agent violates R1. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

During testing, an environment was chosen that specifies a prevailing friction using a friction coefficient. The agent has been 
tested in environments with the friction coefficients 0.8 - dry asphalt, 0.4 - wet asphalt (i.e., ≥ 1.5mm surface water), and 0.2 - icy 
roads.

The test results are presented in Fig. 12. The distance between the ego and obstacle is on the x-axis, and ego’s velocity is on the 
y-axis. Each point encodes a vector of final values of a single test run in term of ego’s speed, the distance between ego and obstacle. 
The color of a point encodes ego’s initial velocity: red 30m∕s, orange 25m∕s, magenta 20m∕s, dark blue 15m∕s, and light blue 
10m∕s. The agent was also tested with the same start distances to the obstacle as in training. This is not depicted separately.

Fig. 12 show that the initially trained agent does not comply with the safety distance of 2m, if the friction coefficient changes in 
the environment, i.e. the trained agent collides with the obstacle on wet and icy roads.

7.1.3. Specification of abstract knowledge scenario

Based on the verification result of the initially trained agent M𝑖, it can be concluded that scenario-relevant knowledge about a 
possible change in the friction coefficient and the associated necessary adaptation of braking distances could lead to satisfaction of 
requirement R1. As a specification of this knowledge in relation to requirement R1, we use the earlier specified TSC specification 
depicted in Fig. 7.

Combination of requirement and knowledge With the derivation of abstract knowledge scenarios presented in Section 5, we create a 
formal foundation for the identification, integration, sharing, and archiving of scenario-relevant knowledge. With this, we address 
the challenges of practitioners (cf. Section 4.1) with the benefits discussed in Section 5.3.4. Given the identified knowledge and the 
requirement R1 as a TSC specification, we can combine the specifications as previously presented. The result is depicted in Fig. 10.

Based on the combined specification, concrete and simulatable scenarios can be derived using suitable tooling. As a result, e.g., in 
Reinforcement Learning (RL), the identified knowledge gap can systematically expand the training environment. A tool for generating 
concrete scenarios for simulation already exists for the TSC language [48]. Furthermore, we used a prototypical RL framework for 
TSC specifications [14]. Considering Reinforcement Learning and testing, the consequences of the requirement specification and 
knowledge specification shall be satisfied by an RL agent and, hence, should not be covered in the derived abstract knowledge scenario. 
Our experiment uses the TSC consequences as the basis for an existing online monitoring of TSC specifications [32]. This enables an 
efficient execution of the testing procedure presented in Section 6. Hence, it enables the execution of the defined Knowledge Infusion 
Test and Requirement Satisfaction Test in each training and test run during execution. Furthermore, the Knowledge Preservation Test 
can be performed directly after executing all training and test runs. The mentioned toolchain is depicted in Fig. 13.

Concretely, online monitors [32] can be synthesized based on TSC consequences. By applying our derivation and a resulting 
abstract knowledge scenario, concrete scenarios can be derived and simulated in, e.g., CARLA [50] using the TSC2CARLA tool 
chain [46]. The knowledge-infused agent can be integrated into the simulation environment, i.e., a vehicle (CARLA actor), and 
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Fig. 13. Pipeline of relevance testing procedure incorporating TSC Runtime Monitoring [32] and TSC2CARLA toolchain [46]. 

executed in a concrete scenario simulation. Consequently, the monitors can provide verdicts on the knowledge conformance and 
requirement satisfaction at runtime, i.e., the input for the presented relevance testing procedure.

7.1.4. Training and verification of M𝑛
Given the combined specification of requirement R1 and the identified knowledge, we adapted the training environment. First, we 

used different but fixed friction coefficients in the training scenarios. Furthermore, we extended the observation space of the agent by 
the prevailing friction coefficient. Finally, we trained an agent M𝑛 with the same learning rate, number of training steps, and episodes 
as before.

In the verification process, we performed the relevance testing procedure presented outlined in Fig. 13. We still used the Gymna-
sium environment as training and test environment.

Based on our abstract knowledge scenario derivation, we were able to obtain monitors for all three tests Knowledge Infusion Test, 
Knowledge Preservation Test, and Requirement Satisfaction Test and run them in each test run.

Example 2 - inadequate knowledge-infused training In the following, we show a knowledge-infused M𝑛 where the ⊙ has already been 
applied, but inadequate training is present (less than 500,000 training steps). The result of each test run of this model is depicted in 
Fig. 14. The results of the relevance testing procedure are as follows: After all test runs, the Knowledge Infusion Test gives the result 
𝕄n ⊈𝒮 𝕂. The Knowledge Preservation Test yields M𝑛 ≥𝒮,R M𝑖. Finally, the Requirement Satisfaction Test yields 𝕄n ⊈𝒮 ℝ. This result 
combination is reflected in row 2 of Table 5.

Given these results, we check the indications obtained. We can rule out that K is inconsistent, as the Knowledge Preservation Test 
was successful and |𝕄i ∩ℝ| < |𝕄n ∩ℝ|. Thus, M𝑛 has learned to satisfy R in more test runs than M𝑖. We can also rule out the possibility 
that, for example, the architecture of M𝑛 is not able to learn the infused knowledge since the knowledge to be considered is already 
successfully applied in some test runs.

Hence, we conclude that M𝑛 seems to need more training steps.

Example 3 - scenario-relevant knowledge-infusion Given the indication for more training, the following is the verification result of the 
knowledge-infused M𝑛 with more training steps. The results are depicted in Fig. 15. 

The results display that for the Knowledge Infusion Test, the result is that the knowledge is successfully infused (cf. bottom half 
of Table 5). An important aspect is that the knowledge-infused agent is checked in the same tests as the M𝑖. Therefore, we were also 
able to perform the Knowledge Preservation Test in each test run and show that the success of M𝑖 and M𝑛 with less training steps is 
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Fig. 14. Test results of knowledge-infused agent M𝑛 . Compared to the first verification with M𝑖 , the agent M𝑛 could not satisfy requirement R1 in all test runs with a 
prevailing friction of 0.8 - dry road (triangles). However, the agent M𝑖 satisfied R1 in all test runs with a prevailing friction of 0.4 - wet road (squares). In addition, M𝑛
satisfies R1 in more than half of the test runs with a prevailing friction of 0.2 - icy road (circles).

Fig. 15. Test results of knowledge-infused agent M𝑛 with 1 million training steps. The agent M𝑛 satisfies requirement R1 in all test runs, including the three different 
prevailing frictions of 0.8 - dry road (triangles), 0.4 - wet road (squares), and 0.2 - icy road (circles).

preserved by M𝑛 (cf. last two rows of Table 5). At the same time, we also performed the Requirement Satisfaction Test, with the result 
that M𝑛 satisfies R in every test run (cf. last row of Table 5) including all prevailing frictions.

In conclusion, the second verification shows that the Knowledge Infusion Operation ⊙ was successful and that M𝑛 satisfies the 
requirement R1 in Scen vbt. Since we can show 𝕄n ⊆𝒮 𝕂, M𝑛 ≥𝒮,R M𝑖 and 𝕄n ⊆𝒮 ℝ, we get an indication that K is scenario-relevant.

Indications for other cases If the knowledge infusion had not been successful, we had to check the upper half of Table 5, for example, 
whether K is consistent at all, if M𝑛 has a inadequate architecture.

If the knowledge infusion were not successful and the result of the Knowledge Preservation Test were M𝑛 ≱𝒮,R M𝑖, we would receive 
the indication that K seems to be inconsistent. In the other case, M𝑛 ’s architecture seems to be inadequate for infusing K.
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Fig. 16. TSC-specification of the correlation between dense fog resulting in short view distance and a change in the braking distance. 

Given a successful knowledge infusion, if the result of the Knowledge Preservation Test is M𝑛 ≱𝒮,R M𝑖, we get indications that K
is partly relevant if |𝕄i ∩ ℝ| < |𝕄n ∩ℝ| or that K is irrelevant if |𝕄i ∩ ℝ| ≥ |𝕄n ∩ℝ|. If 𝕄n ⊈𝒮 ℝ, we get the indication that 𝕂 is 
inconsistent.

Lastly, given a successful knowledge infusion and the result of the Knowledge Preservation Test is M𝑛 ≥𝒮,R M𝑖, we get indications 
that K is partly relevant if |𝕄i ∩ℝ| < |𝕄n ∩ℝ| or that K seems irrelevant if |𝕄i ∩ℝ| ≥ |𝕄n ∩ℝ|. If 𝕄n ⊈𝒮 ℝ, we get the indication 
that K seems to be insufficient.

Finally, by evaluating this example, we demonstrated the feasibility of our proposed relevance notion, TSC-based knowledge sce-
nario derivation, and the proposed relevance testing procedure to identify scenario-relevant knowledge systematically and formally. 
Hence, these methods can help practitioners address the question of whether infused knowledge is relevant for an AI model to satisfy 
its task.

7.2. Relevance vs. Statistical correlation

In the previous experiment, we show that we are able to obtain relevance indicators with our relevance testing procedure. Finally, 
we obtained the indication that knowledge on the extension of the braking distance due to the present friction is scenario-relevant. In 
order to show that relevance assessment for AI driving functions is important and differs from a common practice - using statistical 
correlations from, e.g. accident databases and statistics [55–58], we show two concrete examples.

The goal of this is to show that it is not sufficient to assume that statistical correlations are scenario-relevant. Without this 
indication, the potential benefits for i) validating early Knowledge-infusion phases, ii) generating a sustainable knowledge base and 
iii) supporting the verification and development of Explainable AI methods are not available.

7.2.1. Dense fog, visibility and braking distance correlation

Let us consider the correlation of accident statistics that rear-end collisions are often accompanied by bad visibility [59]. Bad 
visibility can occur, for example, due to snowfall or dense fog. We assume that the initially trained agent M𝑖 does not satisfy the 
requirement in test runs with snowfall or bad visibility. In that case, this can lead to the mentioned correlation being considered 
as relevant knowledge (and not the prevailing friction). The correlation that the braking distance changes in bad visibility could be 
specified as a TSC as shown in Fig. 16:

Based on this specification and our derivation of abstract knowledge scenarios for training and testing purposes (composing R1 
specification and this knowledge specification without the TSC consequence, cf. Fig. 9), we trained another agent using reinforcement 
learning. This time, the agent does not receive friction but the current visibility as an observable variable.

The agent was trained with the same reward function and training parameters as before (see Section 7.1.2). The new observation 
parameter split the same test runs as before (see Section 7.1.2 into test runs with good visibility (visibility = 100 m) and bad visibility 
(visibility = 20 m). The test results are shown in Fig. 17. 

The results of the relevance testing procedure are as follows. After all test runs, the agent is able to satisfy the requirement on 
icy roads with bad visibility (circles), as well as on dry roads with good visibility (diamonds). Thus, the knowledge was successfully 
integrated and the Knowledge Infusion Test gives the result 𝕄n ⊆𝒮 𝕂. The Knowledge Preservation Test yields M𝑛 ≥𝒮,R M𝑖. Finally, 
the Requirement Satisfaction Test yields 𝕄n ⊈𝒮 ℝ. This result combination is reflected in row 7 of Table 5. We therefore check the 
indications obtained. We can rule out that K is irrelevant, as the knowledge preservation test was successful and |𝕄i ∩ℝ| < |𝕄n ∩ℝ|. 
Thus, M𝑛 has learned to satisfy R in more test runs than M𝑖. Next, K seems not sufficient since 𝕄n ⊈𝒮 ℝ. However, since |𝕄i ∩ℝ| <|𝕄n ∩ℝ|, we get the indication that K is partly-relevant.

The tests also show that the agent is not able to satisfy the requirement in the cases, which are not explicitly or implicitly specified 
by the correlation but plausible combinations: icy road - good visibility (stars), and dry road - bad visibility (triangles). Due to the 
same training duration as the agent in Fig. 15 and violation of the requirement R1 in specific test cases, we are able to conclude that 
the correlation remains partly-relevant and knowledge is missing.

7.2.2. Snow, average speed and braking distance correlation

Let us consider the correlation that rear-end collisions are often associated with high environmental speed in bad weather condi-
tions [60]. This correlation specified as TSC is shown in Fig. 18: 

Based on this specification and our derivation of abstract knowledge scenarios for training and testing purposes (composing R1 
specification and this knowledge specification without the TSC consequence, cf. Fig. 9), we trained another agent using reinforcement 
learning. This time, the agent does not receive friction but only the surrounding speed of other vehicles as an observable variable. 
The agent was trained with the same reward function and training parameters as the final agent before (see Section 7.1.2). The new 
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Fig. 17. Test results of knowledge-infused agent M𝑛 with partly-relevant correlation (visibility). The agent M𝑛 satisfies requirement R1 in test runs with icy road and bad 
visibility (circles). This is the combination that the correlation expresses directly. The agent also satisfies R1 in test runs with dry road and good visibility (diamonds), 
which is just the indirect case of the correlation. The problematic cases are the ones which are not explicitly or implicitly covered by the correlation. The agent does 
not satisfy R1 in any test cases with icy roads and good visibility (stars) or dry roads and bad visibility (triangles). Additionally, the agent satisfies R1 in all test runs 
with wet roads. Here, the agent was successful by applying the same driving strategy as for icy roads and bad visibility.

Fig. 18. TSC-specification of the correlation between snow, resulting in low average speed of surrounding traffic and a change in the braking distance. 

Fig. 19. Test results of knowledge-infused agent M𝑛 with partly-relevant correlation (surrounding speed). The agent M𝑛 satisfies requirement R1 in test runs with icy 
road and low average speed of surrounding traffic (circles). This is the combination that the correlation expresses directly. The agent also satisfies R1 in test runs with 
dry road and high average speed of surrounding traffic (diamonds), which is just the indirect case of the correlation. The problematic cases are the ones which are not 
explicitly or implicitly covered by the correlation. The agent does not satisfy R1 in any test cases with icy roads and high average speed of surrounding traffic (stars) 
or dry roads and low average speed of surrounding traffic (triangles). Additionally, the agent satisfies R1 in all test runs with wet roads. Here, the agent was successful 
by applying the same driving strategy as for icy roads and low average speed of surrounding traffic.

observation parameter split the same test runs as before (see Section 7.1.2 into test runs with low average speed (5 m∕s) and high 
average speed (27 m∕s) of surrounding vehicles. The test results are shown in Fig. 19.
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Fig. 20. TSC-specification of our exemplary requirement R2 “The system should always maintain a lateral distance of at least 0.5m while turning”. 

Given these tests, the relevance testing procedure yields the same results as for the correlation before: The agent is able to satisfy 
the requirement on icy roads with low average surrounding speed (circles), as well as on dry roads with high average surrounding 
speed (diamonds). Thus, the knowledge was successfully integrated and the Knowledge Infusion Test gives the result 𝕄n ⊆𝒮 𝕂. The 
Knowledge Preservation Test yields M𝑛 ≥𝒮,R M𝑖. Finally, the Requirement Satisfaction Test yields 𝕄n ⊈𝒮 ℝ. This result combination 
is reflected in row 7 of Table 5. We therefore check the indications obtained. We can rule out that K is irrelevant, as the knowledge 
preservation test was successful and |𝕄i ∩ℝ| < |𝕄n ∩ℝ|. Thus, M𝑛 has learned something that satisfies R in more test runs than M𝑖. 
Next, K seems not sufficient since 𝕄n ⊈𝒮 ℝ. However, since |𝕄i ∩ℝ| < |𝕄n ∩ℝ|, we get the indication that K is partly-relevant.

The tests also show that the agent is not able to satisfy the requirement in the non-specified but plausible combinations: icy road 
and high average surrounding speed (stars), and dry road and low average surrounding speed (triangles). Due to the same training 
duration as the agent in Fig. 15 and violation of the requirement in specific test cases, which explicitly does not include the correlation, 
we are able to conclude that the correlation remains partly relevant and further knowledge is missing.

Note, that the agent generalizes in tests with wet roads (friction 0.4, not seen in training) and can satisfy the requirement using 
the same driving style as for icy roads and bad visibility. With other and more complex environmental properties, it may be the case 
that the knowledge preservation test results in |𝕄i ⊆ℝ| ≮ |𝕄n ⊆ℝ|, then K may even be irrelevant (see row 6 of Table 5). This can 
happen, for instance, if only a small part of property combinations given by the correlation is covered in tests and a majority of results 
do not satisfy the requirement. It can occur, for example, with correlations that are generally weak or unimportant in the specifically 
selected test runs.

In the presented examples, enriching training data by identified statistical correlations leads to better results. However, these 
correlations do not necessarily result from causal relations. Hence, they may lead to misguidance of the AI, as illustrated by the 
observation of the surrounding average velocity of other traffic participants and its correlation to the necessary braking distance. 
This shows that the pure use of statistical correlations may lead to better results, but the correlations are not equally relevant to the 
scenario. Therefore, compared to statistical correlations, only relevance indications provide more insights and increase the means for 
i) validating early Knowledge-infusion phases, ii) generating a knowledge base and iii) developing Explainable AI methods.

7.3. Safe turning - environmental knowledge specification

In the following, we introduce another example, which we will treat theoretically. We apply our methods for the second form of 
abstract knowledge specification environmental descriptive (cf. Section 5.2), in order to show feasibility.

Let us assume the requirement

R2 The system should always maintain a lateral distance of at least 0.5m while turning.

Requirement R2 TSC-specification The TSC specification of R2 is depicted in Fig. 20. As before, we use a HaFiC-TSC and specify that 
if ego (green car) has approached a T-junction and turns, that ego should keep a lateral distance of 0.5 meter while turning. 

Knowledge TSC-specification Let us assume that a trained agent does not satisfy R2 in all test runs, i.e., M𝑖 does not satisfy R. In the test 
runs, the agent could not maintain the required lateral distance due to weather-related environmental changes and sometimes swerved 
with the tail. Furthermore, this behavior occurs on wet and icy surfaces. In contrast to our first experiment, let us assume that we 
cannot obtain information about the prevailing friction. Therefore, we demonstrate how to utilize temporal properties about specific 
environmental descriptive knowledge using TSCs. Specifically, we utilize the current outside temperature and weather information.

Further assume that by analyzing test runs, it is recognized that the lateral velocity in turns is not adjusted depending on the 
current surface. As a result, the agent did not satisfy R2 in test runs with wet and icy surfaces. The maximum lateral acceleration in 
such weather conditions was identified as potentially scenario-relevant knowledge. The environmental descriptive specification for this 
knowledge is depicted in Fig. 21. 

Combination of requirement and knowledge Based on the TSC specification of requirement R2 and potentially scenario-relevant knowl-
edge, we can perform our abstract knowledge scenario derivation once again. In doing so, we provide a formal basis for closing the 
identified knowledge gap and for systematic integration and testing of the potentially scenario-relevant knowledge. With that, we 
address the challenges of practitioners (cf. Section 4.1) with the benefits discussed in Section 5.3.4.

Applying our derivation results in the TSC specification depicted in Fig. 22. Using the derived abstract knowledge scenario, we thus 
systematically offer a formal basis for targeted retraining and testing of, e.g., an RL agent specifically in the identified knowledge gap. 
Furthermore, based on the TSC specification and the presented tooling, we can again perform the three tests of the relevance testing 
procedure for each test run. In this example, the knowledge infusion test would check whether M𝑛 adjusts the lateral acceleration 
under specified weather conditions. In this example, the Knowledge Preservation Test would check whether M𝑖 maintains the lateral 
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Fig. 21. TSC specification of our identified knowledge “The maximum lateral acceleration on icy roads should not exceed 3m∕s2. If weather conditions indicate icy roads, 
do not exceed a maximum lateral acceleration of 3m∕s2 while turning.”. Given a preceding abstract scenario phase (history), where it rained, and the environment 
temperature was below 0 ◦C. In addition, less time has passed than needed for the road to be free of ice or dry. Consequently, given by the identified knowledge, while 
ego is turning (future), do not exceed a maximum lateral acceleration of 3m∕s2 (consequence).

Fig. 22. Result of abstract knowledge scenario derivation combining requirement R2 and potentially scenario-relevant knowledge. 

distance of 0.5m in the test cases in which M𝑖 was already able to do so. Finally, the Requirement Satisfaction Test would check 
whether M𝑛 maintains the lateral distance in each test run of Scen. The respective indications of any combination of test results 
can be found in Table 5. In conclusion, with this example we presented and theoretically discussed the feasibility of our abstract 
knowledge specification with environmental descriptive knowledge.

7.4. Summary

In this case study, we used two examples to show how the presented methods can be combined and present our methods’ unique 
values. We demonstrated the systematic derivation of abstract knowledge scenarios using Traffic Sequence Charts for both examples. 
Concretely, we have specified both types of abstract knowledge scenarios Kdesc and Kreq. Furthermore, we have executed the rele-
vance testing procedure and showed that our method can i) provide several indications and ii) differentiate between causal relations 
and statistical correlation. For the first example, we trained a Reinforcement Learning agent into which knowledge was integrated 
by reward shaping. We used our methods to show that the identified and integrated knowledge is scenario-relevant according to our 
definition. Additionally, we trained two new agents and infused knowledge based on statistical correlation, which can be identified 
as potentially scenario-relevant for the first considered requirement. Our relevance testing procedure indicated that the statistical 
correlation is only partly relevant compared to the scenario-relevant knowledge about prevailing friction. Taking into account the 
assumptions for the specification of R and Kreq (see Section 5), we can check all spatio-temporal properties that are specified as TSC 
and are observable for relevance to the performance of a knowledge-infused AI about the satisfaction of requirements. For the second 
example, we provided specifications of R and Kdesc and discussed the application of the relevance testing procedure theoretically. 
Overall, we demonstrated that our methods can support practitioners in answering whether infused knowledge is relevant for an AI 
model to satisfy its task. Based on these methods, we help address ML practitioners’ current challenges (cf. Section 4.1).

8. Related work

In the following, we present and discuss related work in knowledge-infused AI, specification of traffic scenarios, and scenario-based 
testing, including monitoring.

8.1. Knowledge-infused AI

Infusing prior knowledge into an AI was already realized by Towell et al. [26] in 1994. In its work, propositional logic rules were 
infused into a feed-forward network. With the revival of AI in the following years, the newly developed neural network types such 
as Bayesian [61] or support vector machines [62] were also investigated to determine how mathematical and physical knowledge 
can be infused. AI’s tasks became increasingly diverse due to technical and methodological developments. This led to the desire 
to infuse more complex mathematical and physical knowledge into an AI, e.g., for non-linear classifications [63]. In 2015, Reich 
et al. integrated mathematical and physical knowledge into Bayesian networks for forecasting and predictions in their work [64]. 
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In digitalization and Industry 4.0, AI has also been used in manufacturing and attempts to infuse physical and mathematical prior 
knowledge, e.g., infusing monotonicity constraints using reward shaping [16].

Due to the rapid development of new network types and training methods, the research field of knowledge-infused AI has also 
focused on suitable solutions for infusing prior knowledge. Here, solutions exist, e.g., for auto-encoders [65], convolutional net-
works [66] and generative models [67], as well as for the training methods Reinforcement Learning [13,68] and Active Learning [18]. 
The field and the term physics-guided AI have been established based on these developments and experiences gained in infusing 
mathematical and physical knowledge. This includes all knowledge-infused AI approaches that deal with physical and mathematical 
knowledge.

Nowadays, the strengths of AI should also be utilized for highly automated and autonomous driving. In addition to physical and 
mathematical knowledge, handing over essential driving functions and decisions to an AI requires knowledge of traffic rules, social 
and societal norms, and ethics in the interaction between the real environment and public transport. Unfortunately, such knowledge 
is often not formalized. Therefore, a current challenge in knowledge-infused AI driving functions is the formalization of knowledge 
that is present in natural language. The works from Collenette et al. [69], Borges et al. [34], Westhofen et al. [33] and also the 
research project KI Wissen [7] have dealt with how traffic rules can be formalized so that they can be used for the development of 
such systems.

To use AI driving functions in public transport, a certain level of acceptance and trust in such systems must also be achieved [8]. 
On the one hand, various studies are dealing with a suitable conformity test for verifying knowledge-infused AI [36,30]. Furthermore, 
in cooperation with the research field of Explainable AI, attempts are being made to identify what knowledge has been learned by 
an AI [18,70] in order to be able to explain decisions made by an AI to, e.g., engineers or vehicle drivers [71].

Our developed relevance testing procedure and systematic method for generating reasonable abstract knowledge scenarios shall 
support these challenges. By identifying whether an AI applies the infused knowledge and, at the same time, satisfies system re-
quirements, we support the verification and validation of knowledge-infused AI. Furthermore, with the identification of relevant 
knowledge, we provide a basis for designing and verifying explanations in the research field of Explainable AI.

8.2. Scenario specification

Two paths for the specification of traffic scenarios have been established in the literature. The first is the textual specification. An 
established standard is OpenSCENARIO [51] from the Association for Standardization of Automation and Measuring Systems (ASAM). 
This standard can be used to specify concrete scenarios with specific maneuvers. Well-known simulation platforms such as CARLA [50] 
and IPG Carmaker [72] already offer robust APIs for simulating OpenSCENARIO specifications. The Scenic framework [73], which 
focuses on the derivation of concrete and simulatable test scenarios, enables the definition of maneuvers and abstract scenarios using 
a probabilistic programming language. The simulation platform CARLA [50] offers a Python API, which enables the specification of 
concrete, directly simulatable scenarios.

In contrast to the established textual specification languages, our developed method for generating abstract test scenarios uses the 
visual yet formal specification language Traffic Sequence Charts (TSCs) [24]. As motivated in Section 5, we see a visual specification 
of traffic scenarios as an advantage when working with non-computer scientists. Especially in the shift of responsibility for essential 
driving decisions from humans to AI driving functions, it will be necessary to involve interdisciplinary experts to infuse social and 
societal norms and psychological or physiological aspects into an AI. We believe that a visual specification can help with interdisci-
plinary communication and thus avoid specification errors, facilitate final cross-checks of a specification, and make the extension of 
a specification more efficient.

Given a formal specification and a map, Klischat et al. in [74] visually specify traffic scenarios using Lanelets. Logical predicates 
are converted into mixed-integer logic, and a quadratic optimization problem is formed, the solutions of which are concrete scenarios. 
In contrast, we use Traffic Sequence Charts to specify formal specifications directly linked to a traffic scenario, and we do not have 
to commit to a specific map. Multi-Lane Spatial Logic (MLSL) [75] is a further visual specification language. The language offers the 
possibility to specify system requirements for system controllers in cooperative systems on urban road intersections. Unlike TSCs, 
which focus on spatio-temporal properties between road users over time, MLSL so far solely is able to reason about movement 
authority. Goyal et al. specify abstract scenarios in [76] using a 3x3 grid editor. The developed VIVAS framework thus enables 
the specification of LTL-based abstract scenarios focusing on discrete-time system requirements. Considering the possible upcoming 
interdisciplinary requirement elicitation of an AI driving function for essential driving decisions, system requirements are specified 
intuitively in continuous time. Using TSCs, continuous-time system requirements [25] can be specified in abstract scenarios and 
consequently discretized for concrete test scenarios. In addition, the TSC language also offers the option of discrete-time specifications.

8.3. Scenario-based testing and monitoring

Scenario-based testing is an established methodology [77]. In combination with simulation, the method offers a robust, cost- and 
time-efficient solution for developing highly automated and autonomous driving functions for strategic testing to verify compliance 
with system requirements [29]. With the development of AI driving functions, the black box property, and huge input space, formal 
verification methods are often inefficient or not applicable at all. Despite this, to check the system behavior for compliance with 
system requirements, the field provides solutions for runtime monitoring, which checks the behavior of a driving function at runtime 
in a simulated test scenario. There are two approaches here: Declarative temporal languages such as linear temporal logic (LTL) and 
signal temporal logic (STL). They offer the possibility to formalize system requirements with temporal properties, and there already 
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exists a wide range of monitoring applications [78–80]. Extensions for the specification of spatial properties, e.g., STSL [81] and 
SpaTeL [82], and SSTL [83] have also been developed. The synthesis of runtime monitors based on these languages already exists 
for various areas such as program verification and the verification of cyber-physical systems [84]. Zapridou et al. present in [85] a 
runtime monitoring based on STL-based system requirements for an Adaptive Cruise Control of an autonomous vehicle. Their goal 
was to monitor the robustness of PID controller requirements (invariant over speed and distance) inside the vehicle. Another example 
is the framework called BARK, presented in [86], which synthesizes monitors for LTL-based traffic rules in order to monitor traffic 
behavior at runtime.

The second approach is based on executable languages [84] such as automata. A wide range of solutions also exists in this 
area [3,87]. In addition, many translation schemes are based on declaratively specified system requirements [88,89]. Recently, 
Goyal et al. presented a conceptual runtime monitoring for abstract test scenarios based on LTL-based system requirements [76] and 
synthetization to state machines using the NuRV framework [90]. Since we use the visual yet formal specification language TSC for 
specification of system requirements and knowledge in abstract scenarios, we also use the existing TSC runtime monitoring [32] (new 
developments are submitted in the same Special Issue as this work). With our relevance testing procedure utilizing the combination 
of scenario-based testing and runtime monitoring, we show a direction in which the research field can develop solutions regarding 
the trustworthiness and system acceptance of knowledge-infused AI driving functions.

9. Conclusion and future work

This work is concerned with assessing the relevance of prior knowledge infused into an AI driving function to enable requirement 
satisfaction. For the first time, established notions of relevance in the field of Information Retrieval (IR) are related to development 
phases of knowledge-infused AI driving functions, and a suitable notion of relevant knowledge will be derived. A procedure for scenario-
based testing is presented. This procedure checks knowledge conformance and requirement satisfaction of knowledge-infused AI 
driving functions. Based on this, we provide statements about the validity of previous development phases and indicate the relevance 
of infused knowledge of an AI driving function. Additionally, we present a systematic method for generating abstract knowledge 
scenarios based on Traffic Sequence Charts (TSCs). They also enable an efficient application of our relevance testing procedure. Finally, 
we presented a case study of the systematic derivation of abstract knowledge scenarios in combination with the presented relevance 
testing procedure. We demonstrated the feasibility of combining our presented methods and the unique value of distinguishing 
causal relations that are relevant for satisfying our example requirements from statistical correlations. These methods provide a 
formal combination of requirements and identified knowledge, as well as a testing procedure addressing the current challenges of 
ML practitioners.

The relevance testing procedure can be used in scenario-based development of knowledge-infused AI that uses prior domain 
knowledge to satisfy its requirements. This procedure can currently only be used for comparisons of specified behavior sets. Further-
more, the systematic derivation of abstract knowledge scenarios can be used if both a requirement specification and a knowledge 
specification are available as TSCs. Currently, the systematic derivation has been developed solely for the TSC language.

With this work, we provide a valuable contribution to the successful application of knowledge-infused AI driving functions in 
public transportation. Our notion of relevant knowledge for knowledge-infused AI, the relevance testing procedure, and the systematic 
method for generating abstract knowledge scenarios are able to address current challenges in the development and analysis of such 
knowledge-infused AI driving functions. Identifying relevant knowledge provides a foundation for knowledge bases that can be used 
for future AI developments and for the design and verification of explanations in the research field of Explainable AI.

In the future, the usefulness and integration of the presented relevance testing procedure can be evaluated using the presented 
toolchain in a larger case study developing a complex AI driving function. In addition, our relevance testing procedure could also be 
extended to handle metrics measuring how robust a requirement is satisfied. Consequently, relevant knowledge could be identified 
that improves existing AI driving functions to satisfy requirements more robustly. For example, permanently driving on the lane but 
close to the lane separator is less acceptable compared to driving mostly in the middle of the lane, although both would satisfy the 
requirement to stay on the lane. Given relevant knowledge, it can be investigated which different representations and information (i.e., 
used dataset, architecture, test suite with coverage information, etc.) a knowledge base needs to be widely applicable. Furthermore, 
it can be investigated how relevant knowledge can be used for the explanation of AI behavior. In addition, a method for validating 
explanations based on relevant knowledge can be developed.
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