
Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

What does AI need to know to drive: Testing relevance

of knowledge

Dominik Grundt ,∗, Astrid Rakow, Philipp Borchers, Eike Möhlmann
German Aerospace Center e.V. - Institute of Systems Engineering for Future Mobility, Oldenburg, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Knowledge-infused AI
Relevance
AI driving functions

Artificial Intelligence (AI) plays an important role in managing the complexity of automated
driving. Nonetheless, training and ensuring the safety of AI is challenging. The safe generalization
from a known to an unknown situation remains an unsolved problem. Infusing knowledge
into AI driving functions seems a promising approach to address generalization, development
costs, and training efficiency. We reason that ascertaining the relevance of infused knowledge
provides a strong indication of the correct execution of previous development phases of knowledge
infusion. As a causal reason for AI performance, relevant knowledge is important for explaining AI
behavior. This paper defines a novel notion of relevant knowledge in knowledge-infused AI and for
requirements satisfaction in traffic scenarios. We present a scenario-based testing procedure that
not only checks whether a knowledge-infused AI model satisfies a given requirement R but also
provides statements on the relevance of infused knowledge. Finally, we describe a systematic
method for generating abstract knowledge scenarios to enable an efficient application of our
relevance testing procedure.

1. Introduction

The development of highly automated driving functions for transportation is advancing rapidly [1]. The use of Artificial Intelli-
gence (AI) modules for path planning [2], perception [3], and decision-making [4] promises to improve safety, efficiency, and comfort
of mobility [5]. If automated mobility is to become established in public transport, AI driving functions must be safe, trustworthy,
and socially acceptable. In order to meet these requirements, human drivers usually go through a driving school and have extensive
experience from being exposed to traffic since early childhood, e.g., as passengers or pedestrians. They can draw on their acquired
knowledge of traffic rules, physics, and social and societal norms to solve novel traffic scenarios.

Many AI approaches attempt to learn to drive based on a large amount of data. Unfortunately, this attempt is limited by the
quantity and quality of the available data. Further, collecting real data and annotating the recorded data is tremendously time-
consuming and costly. In recent years, the generation of suitable synthetic data has already significantly reduced the cost and time
required for data-driven AI approaches [6]. However, AIs’ generalization capabilities still need to be improved, and obtaining data
for every possible situation seems intractable even with synthetic data. Hence, different approaches are needed.

Recently, there has been a focus in the AI community on using knowledge to develop AI driving functions [7]. One such application
is Knowledge Infusion. Knowledge Infusion aims to bring prior knowledge (e.g., in transportation domain knowledge from physical laws,
traffic rules, and social norms) into the AI. The resulting AI should generalize beyond the training data set, consider rules and social

* Corresponding author.

E-mail addresses: dominik.grundt@dlr.de (D. Grundt), astrid.rakow@dlr.de (A. Rakow), eike.moehlmann@dlr.de (E. Möhlmann).

https://doi.org/10.1016/j.scico.2025.103297
Received 14 June 2024; Received in revised form 17 January 2025; Accepted 27 February 2025

Science of Computer Programming 244 (2025) 103297

Available online 4 March 2025
0167-6423/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://orcid.org/0000-0002-8233-7429
mailto:dominik.grundt@dlr.de
mailto:astrid.rakow@dlr.de
mailto:eike.moehlmann@dlr.de
https://doi.org/10.1016/j.scico.2025.103297
https://doi.org/10.1016/j.scico.2025.103297
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2025.103297&domain=pdf
http://creativecommons.org/licenses/by/4.0/

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 1. Overview of our contribution. This paper focuses on the notions of relevance and our testing procedure to assess the relevance of infused knowledge and AI’s
performance.

norms, and act more safely in novel scenarios. Knowledge-infused AI thus seems to provide a means to yield more trustworthy [8]
and social [9] AI models than purely black box data-driven approaches. There are various methods for knowledge infusion where
either (1) knowledge is explicitly formalized or (2) indirectly given via enriched data sets containing diverse knowledge. For more
details on the various techniques and their challenges, we refer to the surveys [10] and [11]. Knowledge-infused AI has already been
successfully used in many domains: modeling physical dynamics [12], automated driving functions [13,14], medical prediction [15],
manufacturing [16], and gaming agents [17]. A more detailed review of related work can be found Section 8.

In the context of knowledge infusion, we focus on the relevance of prior knowledge in the automotive domain. We consider prior
knowledge that is specified in a symbolical logic and is either (i) a refinement of requirements or (ii) a description of critical scenarios.
We consider an AI development process as described in [10] where knowledge is first identified by, e.g., domain experts, and then the
knowledge is formalized before it gets integrated into the AI model. The process is described in more detail in Section 2. This process
of knowledge-infusion is an active research field [10,18]. We address the following research question within this field:

RQ: Is the infused knowledge relevant for an AI model to fulfill its task?

Intuitively, knowledge is relevant if it needs to be infused into the AI because the AI does not satisfy its requirements otherwise. As
AI training is costly, being able to provide relevant knowledge hence will enhance effective AI development. However, the above
question Q is rarely considered in current development processes and the concept of relevance is not formally defined in this context.
The work presented in this paper is driven by practical experience gained from the research project KI Wissen [7] and is further
substantiated by the challenges identified in [19], which we discuss in Section 4.1.

Our contributions are threefold. For one, to answer the question RQ, we define a notion of relevant knowledge of knowledge-infused
AI for requirements satisfaction in traffic scenarios (cf. Section 4). This notion captures the intuition that knowledge is relevant if it
needs to be infused into the AI model to enable it to satisfy its requirements. We argue that a formal notion is the foundation for
building a database of relevant domain knowledge for the development of new AI models targeting similar functionalities. Moreover,
our notion is such that it captures a causal reason for a model’s behavior and thus improves the explainability of AI models [20,21].
These benefits for the development of AI are discussed in more detail in Section 4.1.

Our second contribution is a testing procedure for relevance given a system requirement R and corresponding knowledge K. This
procedure indicates whether the infused knowledge K is

(a) valid, incomplete or incorrect formalized,
(b) considered by the AI, and
(c) relevant for an AI driving function to satisfy R.

The derived indicators (summarized in Table 5) make it possible to validate development phases, to diagnose issues of knowledge
infusion and to control the storage of relevant knowledge. This method assumes a given AI model. As this testing procedure is
scenario-based, it can be incorporated seamlessly into state-of-the-art scenario-based validation and verification of automated driving
functions [22,23].

Our third contribution is a systematic method for deriving abstract knowledge scenarios, which enables us to execute our relevance
testing procedure efficiently. Here, we exploit the visual yet formal specification language Traffic Sequence Charts (TSCs) [24] for
scenario-based system requirements specification, corresponding knowledge, and abstract knowledge scenarios.

Fig. 1 gives an overview of our contributions within the context of our work. We only present the context as far as necessary and
focus on the relevance notions and our testing procedure to assess the relevance of infused knowledge and the AI’s performance.

Given requirements and knowledge formalizable as Traffic Sequence Charts (see [14] for a taxonomy of TSC formalizable knowl-
edge and [25] for TSC formalizable requirements) and an AI model, our method assesses the relevance of infused knowledge.

Science of Computer Programming 244 (2025) 103297

2

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 2. Embedding of knowledge-infused AI development phases in the established V-model. Our contribution aims to determine whether identified and integrated
knowledge is relevant in the sense that it enables an AI driving function to satisfy system requirements.

This paper is structured as follows: In Section 2, we summarize the motivation for knowledge-infused AI and introduce the phases
of developing knowledge-infused AI models. In particular, we describe embedding the development into requirements-driven devel-
opment of driving functions. Section 3 provides preliminaries for our work. In Section 4, we provide an overview of existing notions
used in the Information Retrieval (IR) field and define a notion of relevance for knowledge infused into an AI. We present our approach
for generating abstract knowledge scenarios based on Traffic Sequence Charts (TSCs) in Section 5. Section 6 presents our relevance
testing procedure for knowledge-infused AI driving functions. A case study of this work is presented in Section 7. We discuss the
related work in Section 8. Finally, in Section 9, we summarize our work and present future work.

2. Knowledge-infused AI driving functions

In 1994, Towell et al. presented one of the fundamental works on knowledge-infused AI1 [26]. Their paper presents a hybrid
learning system for neural networks. Connectionist learning techniques are combined with the infusion of problem-specific domain
knowledge represented in propositional logic. It is demonstrated that the resulting networks generalize better than a wide variety of
learning systems and even better than several techniques proposed by biologists [26].

Since then, technical innovations have enabled complex applications of knowledge infusion, e.g. in domains such as medicine [27]
or transportation [28]. In the transportation domain, especially path planning, faces an utmost complex input space due to a rather
unconstrained context in the real world. The following observation motivates the interest in knowledge infusion. Humans do not
need to know all possible driving scenarios to behave appropriately in unknown situations. Instead, experiences, rules, and norms are
used to derive decisions. In [10], the authors present a survey on approaches regarding infusing such relevant information, referred
to as knowledge [10], into the AI. Such a knowledge infusion may improve the performance of cyber-physical systems that often face
complex input spaces when making decisions, especially in non-data-covered scenarios.

2.1. Development of knowledge infused AI

In addition to a data-driven AI development process, the development of knowledge-infused AI comes with additional steps, each
of which brings its challenges [10,18]. These steps are Knowledge Identification, Knowledge Formalization, Knowledge Integration, AI
Training and AI Evaluation.

Fig. 2 gives an overview of these steps and illustrates their embedding in the system development process, which will be discussed
later in Section 2.2. First, we briefly explain the individual steps.

Knowledge identification First of all, potentially relevant knowledge must be found. This phase is called Knowledge Identification. Here,
domain experts and data scientists analyze the application domain for knowledge relevant to the system under development. In this
phase, artifacts of analytical steps like the results of criticality analysis [29] may be used, which forms the basis for safety-critical
knowledge. Identified knowledge may, for instance, be specific friction values for different road surfaces and weather conditions.

1 often also referred to as knowledge-integrated, -augmented, or knowledge-based AI.

Science of Computer Programming 244 (2025) 103297

3

D. Grundt, A. Rakow, P. Borchers et al.

Knowledge formalization After identification, the knowledge is formalized for integration in the Knowledge Formalization phase. Many
prior knowledge sources differ in quality, type of knowledge, and the form in which this knowledge is available. For instance,
mathematical and physical knowledge is often already formalized and can be used for integration without much effort. In contrast,
expert knowledge, e.g., traffic rules or court decisions, is usually not given inappropriately formalized for integration. To this end,
researchers like Manas et al. [30], Szegedy [31], Westhofen et al. [33], and Borges et al. [34] explore how, e.g., naturally linguistic
knowledge, can be formalized.

Knowledge integration and AI training Once knowledge has been formalized, it can be infused in different ways. Common are, e.g.,
the embedding in training methods like knowledge-infused Reinforcement Learning [13] or by utilizing the AI architecture [35].
This phase is called Knowledge Integration. Subsequently, after knowledge has been infused, the AI Training can take place. Depending
on the integration and training methods, e.g., adjustments can be made to weighting knowledge at runtime to achieve better AI
performance [18].

AI evaluation Finally, after training knowledge-infused AI, AI Evaluation then evaluates whether the trained AI driving function
correctly applies infused knowledge and achieves the expected or a better performance. Different methods exist for evaluation.
[32,36] present approaches to evaluation at runtime while [18] presents evaluation approaches performing executing the AI in tests.
We also advocate assessing the relevance of the knowledge in this phase for three reasons. (1) Knowing what knowledge is relevant
indicates whether the identification and formalization of the knowledge was correct. (2) We envision building knowledge bases to
support the development of new AI models. Since training is expensive, such knowledge bases should only manage truly relevant
knowledge. Finally, (3) we envision that methods for self-explanation can benefit from this knowledge.

2.2. Requirements-driven knowledge-infused AI system development

For the homologation of vehicles with knowledge-infused AI controlling a driving function, the AI development steps must be inte-
grated into established requirements-driven development processes such as the established V-model development process, illustrated
in Fig. 2. The phases of knowledge-infused AI development take place after the decision has been made that knowledge-infused AI
shall realize a driving function. Hence, the phases can be seen as instances of the implementation phase of the V-model process. We
envision that the Knowledge Identification uses results of the requirements elicitation since the AI incorporates knowledge relevant to
the respective requirement. Whether the infused knowledge is relevant (enables the AI to satisfy its requirements) has to be checked
in the phase of AI Evaluation – i.e., after knowledge formalization and the actual infusion.

3. Preliminaries

In this section, we give short introductions to the topics of artificial intelligence (Section 3.1), testing safety-critical systems
(Section 3.2), and infusing knowledge into AI driving functions (Section 3.3). It also provides some background used in the later
sections and introduces some basic notions and concepts.

In Section 3.1, some basic assumptions regarding the AI considered are made, and we introduce knowledge infusion as an operation
that yields a new model from an initial model. Section 3.2 first explains the role of scenarios when testing safety critical systems and
then explains the conceptual differences between formal verification and testing using simulation. In Section 3.3, we introduce our
frequently used denotations, defining sets of trajectories and their relations.

3.1. Artificial Intelligence (AI)

This paper considers black-box AI methods. As learning approaches, we focus on the data-driven approaches of Supervised Learning
and Reinforcement Learning, although the scope of the paper is wider than these. In Supervised Learning, each training example helps
the model to recognize the differences between its prediction and the actual outcome. At the beginning of training, the model can
make mistakes, but it improves its predictions through feedback from the labels and by adjusting the weights. Over time, the error
decreases, and the model converges to a function that captures the relationship between inputs and outputs. Overfitting can occur
when the model is too much tailored to the training data and generalizes poorly to new data. In Reinforcement Learning, the model
receives feedback in the form of rewards, which can occur with a delay. The learning process is dynamic, as the agent actively
explores the environment while continuously adapting. To achieve the best results, the agent must balance exploration (exploring
new strategies or paths) and exploitation (taking advantage of knowledge already learned).

We classify as the reasons for AI failing to learn a requirement R as

Inadequate Model: The model lacks the capacity or the right architecture for the task.
Inadequate Data: The dataset is too small, poor in quality, or lacks some knowledge 𝕂.
Inadequate Training: The training is either too short (underfitting), too long (overfitting), or there are inadequate settings
of hyperparameters (e.g., bad gradient flow, poor choice of optimizer).

Knowledge infusion Knowledge means information validated by, e.g., experiments, studies, or experts [10]. In particular, knowledge
does not need to be true in our setting.

Science of Computer Programming 244 (2025) 103297

4

D. Grundt, A. Rakow, P. Borchers et al.

As described in more detail in Section 2, we consider a basic Knowledge Infusion Process of the phases Knowledge Identification,
Formalization, Integration, AI Training and AI Evaluation. In the following, we define the term Knowledge Infusion Operation as the
operation that changes the initial model M𝑖 to the infused model M𝑛. The Knowledge Infusion Operator hence represents the effect
of Knowledge Integration plus AI Training and assumes identified and formalized knowledge as well as an initial model be given.
If the infusion had no effect, the initial model M𝑖 equals the knowledge-infused model M𝑛. The Knowledge Infusion Operation is
parameterized by the integration means.

Notion (Knowledge Infusion Operation). The knowledge infusion operation, ⊙, takes

• an initial net M𝑖,
• knowledge K, and
• a means of integration I, which is either

– a modification of the architecture or
– the knowledge as input
as well as

• a training process P𝑡,

and yields a new model M𝑛 =⊙ (M𝑖,K,I,P𝑡).

In abuse of notation, we also write M𝑛 = M𝑖 ⊙ K to denote that M𝑛 is the result of infusing knowledge K into M𝑖. I and P𝑡 are not
further specified, but we make a further assumption: The training P𝑡 of M𝑖 causes a gradual shift of the model’s focus as it refines its
knowledge based on the new data distribution. As training continues, parts of the previously learned knowledge may be modified. The
dynamics of how the previously learned is preserved, changed, or forgotten depends on several factors. One factor is the similarity of
the data/requirement/knowledge. The model will likely preserve the original requirement if previously learned knowledge is similar
or closely related to the new knowledge. If the new data is sufficiently different from the original training data, the M𝑛 ’s internal
representation can shift significantly, which may lead to forgetting the previous knowledge. Another factor is the learning technique.
To prevent catastrophic forgetting, continual learning techniques may be used, such as e.g., elastic weight consolidation (EWC), which
adds a penalty for changing important weights tied to the old knowledge, or replay methods, which store samples from the previous
task and periodically retrain the model on them to maintain older knowledge.

3.2. Testing

Part of the specification of a driving function is the operational design domain (ODD) that defines the limits for using the function.
According to the ISO13586:2000 [22], scenarios are an intrinsic part of evaluating the safety of autonomous driving systems.

A scenario is a finite temporal sequence of an arbitrary number of situations. In contrast to a static traffic situation, scenarios
enable the analysis of relationships and interactions between the environment, objects, and traffic participants and their evolution
over time. Scenarios can be abstract to a certain degree and correspond to several concrete scenarios. In Section 5.1, we will present
Traffic Sequence Charts (TSC), an example of a formal yet visual language that can be used to specify abstract traffic scenarios.

Due to the open world context of driving functions, we cannot explore all possible behaviors of an AI driving function. Therefore,
a combination of testing and formal verification methods is employed to verify that the system satisfies a given requirement R. To
test a system, it is the current state of practice that test engineers carefully determine a test suite for a given requirement R ito. a set
of concrete test cases. This suite should cover all relevant cases wrt. satisfying R. Thus, it realizes a good coverage of the ODD. The test
executions (or test runs) (i.e., executing the test cases) are monitored whether they satisfy R.

Test cases can be executed in simulation (i.e., within a virtual environment), in the real world, or in hybrid environments combining
simulations with the real world. In this work, we focus on testing in simulation, but our contribution is not limited to this testing
method.

3.2.1. Formal methods & testing in simulation

The notion model-based design refers to a design process where the development phases are accompanied by assessment methods
that verify and validate the system under development early on. These methods either test the system in simulation or explore the
system’s behavior through formal methods.

The simulation engines may vary over time and have different foci as well as the employed formal models. We use in this paper
the term world model to refer to the model W of the application domain (either the formal model or model implicitly realized by the
simulation engine). In our case, we assume that the world model describes the context of the driving function, which has a finite set
of objects, such as vehicles or roads.

A trajectory 𝜏 ∈ of length 𝑙 is a function assigning values to attributes of a finite set of objects (e.g., vehicles, roads) for each
time 𝑡 ∈ [0, 𝑙) ⊂ 𝕋 . 𝜏(𝑡) denotes a vector of values for all the objects’ attributes at time 𝑡 ∈ 𝕋 . We denote the set of all trajectories of
the world model W as 𝕎. We also call the trajectories in 𝕎 concrete traffic scenario. In this paper, we study linear temporal properties,
as described by, e.g., metric temporal logic [37].

Science of Computer Programming 244 (2025) 103297

5

D. Grundt, A. Rakow, P. Borchers et al.

Table 1
Commonly Used Denotations and their Meaning.

Denotation Meaning
M𝑖 initial AI model
M𝑛 model after infusion of K
K knowledge to infuse
K𝑖 knowledge learned by M𝑖
W world model
R requirement for M𝑖, M𝑛
𝒮 test suite

𝕄n set of traj. of M𝑛 ∥ W ⊆𝕎
𝕄i set of traj. of M𝑖 ∥ W ⊆𝕎
𝕂 set of traj. of W satisfying the knowledge K, 𝕂 ⊆𝕎
𝕂𝑖 set of traj. of M𝑖 satisfying the requirement R, 𝕂𝑖 ⊂𝕎,

represents the knowledge learnt by M𝑖
𝕎 set of traj. of W
ℝ set of traj. of W satisfying the requirement R, ℝ ⊂𝕎
𝕊 set of traj. of W that are part of 𝒮, 𝕊 ⊆𝕎
𝕄 ⊂ℝ all of M’s traj. satisfy R
𝕄 ⊆𝒮 ℝ M satisfies R in 𝒮, i.e. 𝕄 ∩ 𝕊 ⊆ℝ
M𝑛 ≥𝒮,R M𝑖 M𝑛 satisfies R in all test runs of 𝒮 where M𝑖 satisfies R

We use the term requirement (or more generally property) to refer to a formal specification R that describes a set of trajectories of
W. We denote the set of trajectories that satisfy R as ℝ. For example, R can be the requirement “Always respect safety distances” and is
presented by all concrete scenarios where the safety distances are respected.

When we say our “AI model M satisfies the requirement R”, it means that we place M into the world model W (see 3.3), denoted as
WM, and then all trajectories 𝕄 of WM satisfy R, also denoted as 𝕄 ⊆ℝ.

While formal methods are often able to derive that a property holds for all trajectories of WM but often have to trade expressiveness
for computational feasibility or even decidability, simulations are usually done non-exhaustively.

We can check whether a (simulation) test run satisfies a (formal) requirement R. Given a test suite 𝒮, we say that “M satisfies R
verified by testing”, if we execute M in all runs of 𝒮 and they all satisfy R. We abbreviate verified by testing as vbt and also write
“𝕄⊆𝒮ℝ” instead of “M satisfies R vbt”. Note that 𝕄⊆𝒮ℝ does not imply that all possible runs satisfy R, 𝕄⊆ℝ, since there may be
runs that violate R but have not been chosen for the test suite 𝒮.

3.3. Knowledge infusion & sets of trajectories

In the following, we introduce frequently used denotations. Table 1 gives an overview. This section can be skipped at the first
read and used in the later sections.

When talking about knowledge infusion in this paper, we usually refer to the initial AI model as M𝑖. We denote the desired system
requirement as R and the knowledge to be infused into M𝑖 as K. Moreover, the AI model resulting from the knowledge infusion is
usually denoted as M𝑛.

This paper discusses how knowledge infusion changes the behavior of the AI model semi-formally. Since we do not explicitly
fix the world model (simulation engine), we cannot fully formally specify the resulting trajectories. Nevertheless, we can concisely
express our ideas using sets of trajectories for reasoning about the accomplished system behavior. Hence, we present how these sets
of trajectories could be defined in the following section. The sketched automata represent just one way in the AI model M, and the
world model W could be specified.

Let automata M modeling the AI control and W modeling the world be given. The states of W are labeled propositions describing
the values of the attributes of all objects of the world model. The edges of M and W are labeled by actions, and transitions are enabled
based on whether respective guards are true. These guards refer to propositions describing the values of attributes of all objects of the
world model W. When reasoning about the performance of an AI model M, we often refer to the set of trajectories that can occur when
M is in control. Since we are interested in how well the AI model M performs its control task, we employ the controller realized by M to
control the vehicle in the world model W, denoted as WM. This means that we compose the automata modeling M and W, synchronizing
W with M on the actions controlled by M. The resulting trajectories, denoted as 𝕄, of the composed system WM = W ∥ M describe what
can happen in the world W if M is in control. If 𝕄 ⊆ℝ, then only behaviors that satisfy R can occur.

A test suite 𝒮 specifies a finite set of executions by fixing environmental attributes, i.e. the test conditions. We denote the set of
trajectories of W that have the required environmental attributes as 𝕊. M𝑛 ≥𝒮,R M𝑖 denotes that M𝑛 satisfies R in at least all test cases
of the test suite 𝒮 where M𝑖 satisfies R.

Let us assume that M𝑖 initially does not satisfy R, but there are some runs of M𝑖 that satisfy R. Hence M𝑖 has learned something but
not sufficiently much. We use K𝑖 to refer to the initial knowledge learned by M𝑖. More precisely, K𝑖 is a constraint that specifies the
set of trajectories 𝕂𝑖 of M𝑖 ∥ W that satisfies 𝕂𝑖 ⊆ℝ.

Science of Computer Programming 244 (2025) 103297

6

D. Grundt, A. Rakow, P. Borchers et al.

4. Notion of relevant knowledge for AI driving functions

In this section, we explore the concept of relevant knowledge in knowledge-infused AI for requirement satisfaction in traffic
scenarios and present related works. We define the notions of ODD relevance (see p. 8) and Scenario-relevance Indication (see p. 10),
and discuss their relation and significance for the work presented here.

We define relevant knowledge as knowledge that enhances AI performance in meeting its requirements, R. More formally, rel-
evant knowledge in AI-controlled driving functions refers to the knowledge essential for improving AI performance to fulfill the
requirements R.

4.1. Why do we need a notion of relevance and a relevance test procedure?

Within the research project KI Wissen [7], academia and industry explored approaches on how different modalities of knowledge
can be formalized and integrated into AI driving functions utilizing existing domain knowledge for data-driven AI driving functions.
In three concrete use cases (i) pedestrian detection under occlusion, (ii) complex lane change, and (iii) controlled rule exception,
the goal was to develop methods for integrating domain knowledge and validating the knowledge-infusions [18,14]. To this end,
we investigated how domain knowledge can be formalized [14] and can check if M𝑛 acts conform to K (𝕄n ⊆𝒮 𝕂?) during run-
time [32]. Thereby using Traffic Sequence Charts (TSC). Throughout this project, we discovered a lack of guidance in identifying
relevant knowledge and choosing the means of knowledge infusion, whether this is the choice of training data or modification of the
architecture. While this issue was not the focus of the project, and hence a state of practice has not been scientifically established
within the project, Heyn et al. [19] recently investigated challenges encountered by practitioners when specifying training data and
runtime monitors for safety-critical machine learning (ML) applications. They analyzed ten interviews with developers of ML models
for critical applications in the automotive and telecommunications sectors, addressing two research questions:

“RQ1: What challenges do practitioners face when specifying training data for ML models in safety-critical software?” [19] and “RQ2:
What challenges arise when specifying runtime monitors, particularly regarding the fulfillment of safety requirements?” [19].

Their findings include

C1 that the data selection process is often nontransparent, with no clear guidelines for defining data variety or context, and current
safety standards provide little guidance,

C2 a lack of appropriate metrics and insufficient safety standard guidance hinders the specification of runtime monitors, and
C3 challenges regarding explainability of ML systems [19, p.3].

Our concept of relevance addresses challenge C1 by guiding the selection of data and design of AI driving functions, strengthening
the connection between requirements and training data. Starting with an AI model M𝑖 that does not satisfy its requirement R, we
consider knowledge as relevant when its infusion enables the model to satisfy R. The process of infusing knowledge K—transforming
M𝑖 into M𝑛—provides a causal explanation for why the infused model satisfies R. This approach establishes a clear link between
requirements and training data during the knowledge infusion process.

Moreover, our notion of relevance accounts for various factors determining whether an infusion operation leads to satisfying R,
offering guidance on when the knowledge can be reused. This serves as the foundation for a knowledge base that catalogs, curates,
and maintains relevant knowledge, facilitating more efficient AI development through knowledge reuse. We discuss this issue in more
detail on page 10.

Regarding the lack of guidance from safety standards in training data and runtime monitor specification (C1 and C2), our approach
uses the results from requirements elicitation, where a criticality analysis leads to safety-related requirements R𝑠𝑎𝑓𝑒. Whether relevant
knowledge is infused is tested by formalizing the infused knowledge K and the associated safety requirements R𝑠𝑎𝑓𝑒 in abstract traffic
scenarios, leading to formal and clearly defined conditions on the context and tasks of AI driving functions. This formalization
also enhances transparency, allowing for cross-examination through formal methods or expert review. Thus, the infusion of relevant
knowledge, as part of a requirements-driven development process, ensures alignment with safety standards and guides AI development
in a structured manner. We can directly derive runtime monitors from the specified formal conditions, based on our work on Traffic
Sequence Charts (TSC) runtime monitoring [32]. The degree of M𝑛 satisfying R can be considered as a measure of M𝑛 guaranteeing
the respective safety properties. Our testing procedure hence provides a test-based measure of guaranteeing the safety properties.

Addressing C3 on explainability, our relevance framework clarifies the causal relationship between the knowledge K, and the
models M𝑖 and M𝑛, by explaining that M𝑖 needs K to meet R. While explainability is not the primary focus of this paper, we plan to
explore self-explainable AI following the approach outlined in [21].

To summarize, the current development and training of ML models lacks guidance and transparency [19]. The infusion of relevant
knowledge, as presented in this paper, contributes to alleviating this challenge by establishing a formally specified link between the
requirements and data/knowledge infusion and characterizing influencing factors of relevance. It hence increases the reusability
of knowledge and guides data selection for future ML models. The aforementioned advantages of our contribution are based on
theoretical considerations. Any evaluation regarding building up a knowledge base would require long-term studies. In Section 7,
several examples examine how our overall testing approach (cf. Fig. 1) establishes relevance indications. It thereby illustrates our
clearly defined process of how different types of knowledge for safety requirements are formalized, infused, and evaluated regarding
their relevance for the considered initial AI model.

Science of Computer Programming 244 (2025) 103297

7

D. Grundt, A. Rakow, P. Borchers et al.

4.2. Dimensions of relevance for AI driving functions

In the following, we discuss the term relevance. Note, that many notions of relevance have been discussed in the literature, and
the discussion is ongoing. Hence, we briefly summarize the known dimensions that are important for our work and then add further
new and specialized dimensions relevant to knowledge-infused AI. As relevance dimensions known from information retrieval (IR),
we introduce topic, system, and situation for AI driving functions since these are important in our setting as well. We then introduce
the dimension predictability, which originates from the field of AI. Finally, we define the new notion of ODD relevance.

The multi-dimensionality of relevance implies that “What knowledge is relevant to infuse into an AI controlling a driving function?”
cannot be generally answered as such since it depends on multiple dimensions, such as the situation or the system.

Information retrieval (IR) deals with the retrieval of information from data storage systems, e.g., databases. Relevance has been
widely conceptualized and discussed in IR from the 1960s to 1990s [38–41], but the discussion is ongoing – also because the IR
systems are evolving.

In IR, a user has an information need specified as a user query. The information retrieved by the IR system should satisfy this
need. The fundamental question of IR is hence QIR:=“What information is relevant to satisfy a user’s information need?”. Relevance is
considered a relation between the retrieved information and the information needed but is also influenced by other aspects, such as
the user’s cognition or the system’s processing capabilities. Relevance is hence called multi-dimensional [40].

In our work, we are interested in the question QAI:=“What information is relevant for an AI driving function in a given traffic
scenario?”. In contrast to IR, an information need results from the requirements that the AI (or rather the system the AI is part of)
must satisfy. While in IR the user is a human, the user is an AI in our setting. Analogously to IR, many aspects of the AI’s context
influence what is relevant – such as the current environment, the state of the system, or the current behavior of other road users.

More precisely, we are here concerned with the question QKI:=“What knowledge needs to be infused into an AI so that it masters its
driving function and satisfies the requirements?”. Our focus is on the knowledge that an AI internalizes during its training. We investigate
the relevance of infused knowledge.2 In our setting, the IR system becomes the knowledge base, which is the result of the previous
development phases (Knowledge Identification and Formalization). While a user formulates a query in IR, the quest for information is
done in Knowledge Identification by domain experts. In the context of AI driving functions, the need for information/knowledge results
from the goal of satisfying the requirements. The dimensions of relevance most important for the work presented in this paper are
summarized in the following.

Topicality. In IR, topicality is a relation, the topic match, between a topic of a query and a topic of a retrieved document (cf. [41,42]).
Transferred to our setting, it is the relation between the topic of a requirement and the topic of knowledge. For example, topical
relevant for satisfying the requirement “Keep a distance between 2-15 meters to a static obstacle” is knowledge about the vehicle’s
physical dynamics, in particular the effects of deceleration.

System Relevance. System relevance is a relation between a requirement, the knowledge, and the system (that is, a specific AI
model in a vehicle). This notion is inspired by the notion of system relevance from IR, which refers to the relation between a query,
the retrieved document, and the internal organization of a system (cf. [43,42]). The AI’s architecture, number of neurons, activation
functions, etc., and also the training data set, duration, and training method influence a trained AI’s performance. The notion of
system relevance emphasizes that these factors influence what is relevant. For instance, after training, we have a different system,
and for this system, new knowledge becomes relevant, given that it has internalized the initial knowledge.

Situational relevance. In IR, situational relevance emphasizes that the current situation in which the user is in (cf. [44,40]) influences
what is relevant. The influence of the situation on the relevance is certainly high, considering driving functions. To reflect this influence
more accurately, we define a specialized notion of situational awareness below.

Predictability. Predictive relevance refers to the importance of a data point or pattern contributing to accurate predictions when
training an AI model [45]. In this work, we are interested in a related notion. We instead are targeting formally specified knowledge
that can drive the generation of data sets.

In this paper, we are concerned with AI models controlling driving functions. These driving functions are developed for a certain
operational design domain (ODD). If the domain is exited at runtime, a different function (or the user) takes over. The ODD limits
the situational dimension and thus influences what knowledge is relevant.

When we want to characterize what knowledge is relevant for the infusion operation, we have to consider that the relevance of
knowledge is always influenced by the initial model M𝑖 into which knowledge is going to be infused, the integration means I, and
the training process P𝑡 (see Section 3.1).

Notion (ODD-relevance). ODD-relevance is a relation between a requirement R, a model M𝑖, and knowledge K. We say that the
knowledge infusion operation ⊙ is ODD-relevant for M𝑖, if

• M𝑖 does not satisfy R in the ODD.
• We can infuse K into M𝑖 (i.e. find I and P𝑡 and apply ⊙), so that
• the resulting trained model M𝑛 =⊙ (M𝑖,K,I,P𝑡) satisfies R in the ODD.

2 Knowledge means information validated by, e.g., experiments, studies, or experts [10].

Science of Computer Programming 244 (2025) 103297

8

D. Grundt, A. Rakow, P. Borchers et al.

For example, knowledge K of how to calculate safety distances when it rains will usually be ODD-relevant for a road vehicle, the
requirement R =“Keep a distance between 2-15 meters to a static obstacle” and to a model M𝑖 still lacking specific knowledge about how
to compute the safety distance when it is raining. Note that the above notion requires that we can infuse knowledge, which means
the notion requires the existence of I,P𝑡 such that the trained model satisfies R.

The above notion calls a sufficient knowledge infusion relevant. It does not require minimal knowledge; that is, we might be able
to infuse a less informative K′ into M𝑖, resulting in model M𝑛′ that satisfies R as well.

Similarly, a knowledge infusion might not be ODD-relevant but partly ODD-relevant. We call a knowledge infusion partly ODD-
relevant if the retrained model M𝑛 does not satisfy the requirement R but is strictly more successful than M𝑖 wrt. R. More formally,
let R𝑖 be the requirement satisfied by M𝑖 with R⇒ R𝑖. If M𝑛 satisfies R′ and R⇒ R′ and R′ ⇒ R𝑖, we call the knowledge-infusion partly
ODD-relevant.

4.3. Assessment of relevance: testing for relevance indications

Along with discussions of “What is relevance?” the question of “How to measure relevance?” has been discussed. Schamber et
al. stated “[...] Relevance is a complex but systematic and measurable concept if approached conceptually and operationally[...]” [41] in
1990 referring to relevance in information retrieval. The multiple dimensions of relevance, as mentioned in the previous section
(the internal realization of the system, its current state, the user’s cognitive abilities, the situation etc.), make it difficult to measure
relevance precisely because some dimensions are not directly observable.

In Section 4.3.1, we discuss the challenges of measuring the relevance of knowledge in our setting. In our opinion, the key
challenges are

(i) ODD-relevance refers to the performance of the AI system in the real world,
(ii) whether knowledge is relevant also depends on the knowledge infusion operation and, hence, on M𝑖, I and P𝑡, and in particular
(iii) the effect of knowledge infusion is doxastic (see below) and hard to assess since, more often than not, it changes a black box

system.

In Section 4.3.2, we define the notion of Scenario-relevance Indication. This notion derives relevance indications from the runs of an
AI that are observed when executing a test suite of a given scenario. The notion links efficiently computable (i) relevance indications
and (ii) ODD relevance via the established approach of executing scenario-based test suites.

4.3.1. Assessing the doxastic effect of knowledge infusion

In order to explain the difficulty of measuring the relevance of infused knowledge, we describe the doxastic (referring to beliefs
in the sense of doxastic logic) effect of knowledge infusion. Therefore, we distinguish between the real world, i.e., the application
domain, and the internal world model of the AI system, in terms of which the AI expresses its beliefs.

In a nutshell, an AI system makes decisions based on its beliefs, which are built based on observations and its knowledge about the
world. Knowledge infusion causes an AI model to change its beliefs or even the internal world model.

Fig. 3 illustrates the effect of knowledge infusion on the AI’s beliefs that result in observable real-world behavior. The Venn
diagrams show set relations of real-world behavior at the top and “believed” behavior at the bottom. Let us assume we have a model
M𝑖 that does not (entirely) satisfy its requirements R, denoted as 𝕄i ⊈ℝ.

The top of (a) shows M𝑖 in terms of its behaviors within its environment. Some of M𝑖 ’s behaviors satisfy R, but not all. During
its initial training, M𝑖 has deferred from the training data some knowledge K𝑖 about the environment and the requirements it must
satisfy. The bottom of (a) depicts M𝑖’s beliefs about its environment and requirements. These do not perfectly match with the reality
(top). We assume here that M𝑖 “believes” to satisfy the requirement (bottom), but it does not satisfy the requirements in the real world
(top).

(b) illustrates the infusion of relevant knowledge that causes M𝑛 to build new beliefs and thus causes M𝑛 to satisfy the requirement
R, 𝕄n ⊆ℝ. At the bottom, the new beliefs about the environment and requirements are depicted, which now match better with reality
(at the top). Note that M𝑛 “believes” in (a) and (b) to satisfy the requirement (bottom), but since only in (b) belief and reality match
better, it actually satisfies the requirement in the real world (top).

The bottom line is that knowledge changes an AI’s internal beliefs, and consequently, it behaves differently in the real world,
reacting to its perceived environment. These changes are complex to assess,3 but they determine whether a model can generalize or
is overfitted. For black box models, we can only monitor the AI’s observable performance to infer whether knowledge K has been
infused (see Section 6, Knowledge Infusion Test), whether M𝑛 loses valuable knowledge of the initial model M𝑖 (see Section 6,
Knowledge Preservation Test) and whether K causes the AI to satisfy the requirement R (see Section 6, Requirement Sat-
isfaction Test).

However, as discussed in Section 3.2, the whole system behavior cannot be explored. Instead, simulations of test scenarios (i.e.,
scenarios of a test suite) that cover the ODD are executed and monitored. Hence, we derive indicators that indicate relevance but
cannot guarantee it. However, given good coverage of the ODD and a well-chosen test suite for each scenario, the relevance indicators
are an efficient way to derive relevance within an established development process.

3 there is ongoing research to self-explainability of AI.

Science of Computer Programming 244 (2025) 103297

9

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 3. Effect of knowledge infusion. Knowledge infusion changes the beliefs the AI builds (bottom) and, in turn, changes its behavior in the real world (top).

Above, we explained the doxastic effect in terms of the conceptual framework for the relevance of safety-critical autonomous
systems as used in [47]. While Rakow in [47] is mainly concerned with the question “What knowledge and observations of the world are
relevant for a given system (with a certain belief space) to accomplish its mission successfully?” focusing on the design of information
retrieval capabilities, we are here interested in “What knowledge is ODD-relevant to infuse into an AI model so that it satisfies the
requirement R of the driving function?” and hence focusing on the training phase and its evaluation.

4.3.2. Scenario-relevance indication

Since we cannot explore all behaviors of an AI model within its ODD, we derive indications from running test suites of scenarios
in our simulations. As discussed in Section 3.2, the scenarios and their test suites for a given requirement R are specified by a test
engineer.

Recall that we say M𝑖 satisfies R vbt in Scen, if M𝑖 satisfies R in all runs of the test suite of the scenario Scen (cf. p. 6). Otherwise,
we say M𝑖 does not satisfy R vbt in Scen.

Notion (Scenario-relevance Indication). Let a requirement R, a model M𝑖, a scenario Scen, and a test suite 𝒮 be given.
We say that we have an indication that the knowledge K is relevant for M𝑖 to satisfy R in the scenario Scen, if

• M𝑖 does not satisfy R in Scen vbt,
• we can apply a knowledge infusion to M𝑖 (i.e. we find I and P𝑡 and apply ⊙), such that
• the resulting model M𝑛 =⊙(M𝑖,K,I,P𝑡) satisfies R in the scenario Scen vbt.

This notion bridges the real world and scenario-based testing. We have found a scenario-relevance indication when we can verify
by testing that the knowledge infusion of K makes M𝑖 satisfy the requirement R. Next, we discuss how to derive ODD-relevance
indications from scenario-relevance indications.

Scenario relevance indications and knowledge bases for ODDs Knowing whether a given piece of knowledge is scenario-relevant is
already valuable. However, to build up a knowledge base, our ultimate goal is to determine whether certain knowledge K is ODD-
relevant. A scenario-relevance indication of K can, as such, be considered an indication of ODD-relevance as well, given that the
scenario is part of the ODD. How strong this indication is certainly depends on the test suite and the fit between simulation and
real environment. Both aspects are common hurdles that are faced as part of the design process. We envision that indications can be
collected and that, over time, more precise specifications of relevant knowledge will hence become available, and stronger indications
can be derived by agglomeration.

The notions of ODD-relevance (cf. p. 8) and scenario-relevance (cf. p. 10) both assume that an infusion operation can be applied to
infuse K i.e., ⊙ (M𝑖,K,I,P𝑡) where M𝑖 is the initial model, I the means of integration and P𝑡 the training process. A database of relevant
knowledge K could catalog tuples (M𝑖,K,I,P𝑡,R,𝒮), i.e., the infusion operation, the requirement, and the test suite. When using the
database, the similarity between AI models, knowledge infusion operation, and requirement has to be judged, and the strength of
indication can be derived from the test suite 𝒮. It is out of the scope of this paper to discuss all these issues. However, the user should
be aware that although relevance indications will lead to a more focused knowledge search and retrieval, the knowledge base must
be used, considering these aspects.

Given a requirement, a systematic approach to determining an initial AI model and a systematic procedure for the knowledge
infusion operation will strengthen the meaning of relevant indications for the newly developed AI. To this end, we present a systematic
approach for knowledge infusion in Section 5.

Science of Computer Programming 244 (2025) 103297

10

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 4. Overview of our contribution as in Fig. 1 with the table of contents of Section 3.2 and the employed TSC tool & research landscape.

Fig. 5. A TSC of three snapshots. The first snapshot is a True Chart, which expresses that anything may happen for an arbitrary non-zero amount of time. The second
snapshot expresses that the ego car faces an obstacle (object with velocity zero) with a distance of 150 to 200 m. Then the ego car has a distance of at most 200 m.

5. Systematic derivation of abstract knowledge scenarios

As illustrated in Fig. 4, our testing procedure to determine whether infused knowledge is relevant uses abstract knowledge sce-
narios. These knowledge scenarios combine requirements and knowledge. In this section, we explain how we construct the abstract
knowledge scenarios and how they are used within our testing procedure to guide the data selection and training and to derive
runtime monitors. The key to these benefits is using the formal specification language. We have chosen Traffic Sequence Charts [24],
which provide a visual, formal, and intuitive specification language that also allows the employment of a rich tool landscape. We
next give a brief introduction to TSCs

5.1. Traffic sequence charts

TSCs are a formalism to specify spatio-temporal logic properties in terms of sequences of constraints. TSCs use a time model 𝕋 ,
which allows the specification of traffic scenarios with continuous and discrete time semantics. Each constraint holds for a non-empty
time duration, and consecutive constraints hold contiguously. Their most used visualization is called Spatial View (SV). A spatial view
snapshot formalizes a conjunction of propositional constraints and focuses on an intuitive visualization of the spatial aspects. A TSC
(specification) basically is a sequence of SVs. A simple example is given in Fig. 5. Below, we explain this more precisely.

Basic and composed charts In order to specify constraints on a trajectory4 in different phases of a traffic scenario, there is the concept
of Charts.

The simplest one is the so-called Basic Chart, which contains an Invariant Node. In our context, the Invariant Node shows a Spatial
View (SV) so that it specifies propositional constraints that invariantly hold over a period of time, i.e., for the interval [𝑏, 𝑒] ⊆ 𝕋 . In
Fig. 5, the invariant of the second snapshot specifies “ego car is facing an obstacle and has a distance of 150 − 200𝑚”. A Basic Chart
thereby describes properties of trajectories (or concrete traffic scenarios) over the underlying world model W (cf. Section 3). A True
Chart is a special form of Basic Charts. It specifies that any behavior is allowed within a non-empty interval. It is visualized as a gray
hatched rectangle (cf. the first snapshot of Fig. 5).

To specify more complex abstract traffic scenarios, Basic Charts are composed of more complex structures using operators (Se-
quence, Concurrency, Choice, etc.). We call these Composed Charts. Fig. 5 shows a Composed Chart of three Basic Charts.

Premise A Premise can be combined with a Composed Chart to express, e.g., an implication. Implications are particularly suitable
for the specification of requirements and scenario-relevant knowledge in combination with scenario-based development. A Premise
can have just a History or a History and Future, which can be a Composed Chart. We call the former History-implies-Consequence(HiC)
and the latter History-and-Future-imply-Consequence(HaFiC). A first example of a HiC is given in Fig. 6 on page 14. The semantics and
visual syntax of HiC and HaFiC are summarized in Table 3. For more details, we recommend the introductory paper [24].

4 Recall that a trajectory is an assignment of values to all attributes of a finite set of objects at each point in time 𝑡∈ [0, 𝑙) (cf. Section 3).

Science of Computer Programming 244 (2025) 103297

11

D. Grundt, A. Rakow, P. Borchers et al.

Table 2
Notation, semantics and visual syntax of Basic Charts.

Name Notation Semantics Visual
(𝐶 =) (𝐶 satisfied on 𝜏 from

time 𝑏 to 𝑒 iff)
Syntax

Invariant Node of a Spatial
View sv

[𝑠𝑣] 𝑒 > 𝑏 and sv satisfied
by 𝜏(𝑡) for all 𝑡 ∈ [𝑏, 𝑒]

Sequence of Basic Charts 𝐶1
and 𝐶2

(𝐶1;𝐶2) ∃𝑚 ∈ [𝑏, 𝑒]: 𝐶1
satisfied by all 𝜏(𝑡),
𝑡 ∈ [𝑏,𝑚], and 𝐶2
satisfied by all 𝜏(𝑡),
𝑡 ∈ [𝑚, 𝑒]

Concurrency of Basic Charts
𝐶1 and 𝐶2

(𝐶1&𝐶2) 𝐶1 satisfied by 𝜏
within [𝑏, 𝑒] and 𝐶2
satisfied by 𝜏
between on [𝑏, 𝑒]

Choice of Basic Charts 𝐶1 and
𝐶2

(𝐶1|𝐶2) 𝐶1 satisfied by 𝜏
between [𝑏, 𝑒] or 𝐶2
satisfied by 𝜏
between [𝑏, 𝑒]

Negation of Basic Chart 𝐶1 !𝐶1 between [𝑏, 𝑒] 𝐶1 is
not satisfied by 𝜏

Basic Chart 𝐶1 with Duration
Constraint ⋈ 𝑑

⋈ 𝑑(𝐶1) 𝑒− 𝑏⋈ 𝑑,
⋈∈ {<,>,=} and 𝐶1
satisfied by 𝜏 on [𝑏, 𝑒]

Table 3
Syntax and semantics of a TSC with activation mode always.

Name Semantics Visual Syntax
(satisfied by a trajectory 𝜏 of length 𝑙 iff)

HiC-TSC with Basic Charts history
𝐻 and consequence 𝐶

∀0 ≤ 𝑏 ≤𝑚 ≤ 𝑙 ∶𝐻 satisfied on 𝜏 between 𝑏
and 𝑚⇒ ∃𝑒 ≥𝑚 of the 𝜏: 𝐶 satisfied on [𝑚, 𝑒]

HaFiC-TSC with Basic Charts
history 𝐻 , future 𝐹 and
consequence 𝐶

0 ≤ 𝑏 ≤𝑚 ≤ 𝑒 ≤ 𝑙 ∶𝐻 satisfied on 𝜏between
𝑏,𝑚 and 𝐹 is satisfied on 𝜏 between 𝑚, 𝑒⇒ 𝐶

satisfied on 𝜏between 𝑚, 𝑒

Activation mode In this paper, we use a slightly simplified version of TSCs and omit the so-called bulletin board.5 We thus mention
the activation mode of a TSC separately here. The activation mode specifies when the chart constraints of the TSC must hold on a
trajectory 𝜏 .6 Any chart constraint 𝐶 must be satisfied at all times 𝑡 between a begin time point 𝑏 to an end time point 𝑒, i.e. 𝜏(𝑡)
must satisfy 𝐶 for all 𝑡 ∈ [𝑏, 𝑒]. If the activation mode is initial, the TSC has to hold initially; that is, the chart constraints must hold
from 𝑏 = 0 and up to a time point 𝑒 greater 𝑏. If the activation mode is always, the chart constraints must hold along 𝜏at all 𝑏 ∈ 𝕋 ,
and for each 𝑏, there has to be an end time 𝑒 greater 𝑏.

5.1.1. TSC scenarios & TSC tooling

A TSC specifies an abstract scenario, i.e. it represents an arbitrary number of concrete scenarios (i.e. trajectories of the underlying
world model).

As illustrated in Fig. 4, we use our test procedure and TSC tooling to derive concrete scenarios. These scenarios can be used for
training during knowledge infusion and for testing, which is our focus. The approach of Becker et al. [48] allows to derive concrete
scenarios from abstract TSCs specifications. A more detailed description of the implementation with a focus on generating reasonable
test suites can be found in [46]. Thereby, it is possible derive concrete scenarios in the form of ASAM OpenX [49] files, which are
directly simulatable, e.g., in simulators such as CARLA [50].

Also illustrated in Fig. 4, we employ runtime monitors that observe whether the requirement R is satisfied and whether the
knowledge is infused. Grundt et al. presents in [32] how these monitors can be derived from a TSC. A more detailed description of
the implementation focusing on the runtime monitoring of complex system requirements is submitted in the same special issue as
this work.

5 It declares, for instance, objects and the activation mode of a TSC.
6 i.e. a concrete run of the W (or simulation engine, respectively), cf. Section 3.3.

Science of Computer Programming 244 (2025) 103297

12

D. Grundt, A. Rakow, P. Borchers et al.

Table 4
Overview of Introduced Denotations.

Name Role Description

R requirement implication of the form “Rdesc ⇒ Rcons”;
intuition: in the cases Rdesc, Rcons required;
given as HiC- or HaFiC-TSCs

Rdesc R’s premise premise of the requirement R, given as TSC, describes the cases where Rcons is required
Rcons R’s consequence consequence of requirement R, given as TSC, describes what is required (in the given cir-

cumstances Rdesc)

M𝑖 initial AI model initial AI model trained to satisfy R
M𝑛 retained AI model M𝑛 evolves from M𝑖 by retraining with the goal of infusing knowledge K

K knowledge to infuse M𝑛 is M𝑖 being retrained with K to satisfy R;
we assume that K has the form of Kreq

Kreq knowledge req. implication of the form “Kdesc ⇒ Kcons”;
intuition: in the cases Kdesc, Kcons required;
given as HiC- or HaFiC-TSCs

Kdesc Kreq ’s premise premise of the knowledge Kreq; describes the cases that have been identified as critical
Kcons Kreq ’s consequence consequence of the knowledge Kcons; describes the required constraints that have to be

accomplished in the critical cases Kdesc

Their intuitive visual specification is a major benefit of TSCs for Knowledge Identification and Formalization. In [25], TSCs have
hence already been used to specify and formalize system requirements as well as for the purpose of knowledge specification for
knowledge infusion of AI [14]. An intuitive visualization fosters communication among experts of different disciplines and hence
allows for cross-checks. Considering the responsibility shifts from humans to AI, further and new experts will be involved in the
system development. These experts are likely not to comprehend temporal logical formulae easily. Thus, the visualization enables
the experts to diagnose incorrect knowledge specifications.

5.2. Abstract knowledge scenarios in the test procedure

This section gives an overview of the testing procedure based on a running example. It prepares the more detailed presentation
in Section 5.3, where we describe the systematic derivation of abstract knowledge TSCs.

In Section 5.2.1, we illustrate that we infuse environmental descriptive and requirement knowledge. Both specification styles will lead
to knowledge TSCs Kreq and Kdesc that will be used in our testing procedure. We discuss these knowledge specification styles based
on a running example. This example will be treated more formally in the following sections. In Section 5.2.2, we sketch how the
testing procedure uses the TSCs Kdesc, Kreq, R, and TSC tooling to establish whether a given knowledge is relevant.

5.2.1. Knowledge scenarios and knowledge infusion

When an AI model M𝑖 fails to satisfy its requirements R, the infusion aims to make the retrained AI model M𝑛 satisfy R. For the
following, we assume that knowledge K has been identified as relevant and has been formalized in the previous phases Knowledge
Identification and Knowledge Formalization. In the following, we consider the case that retraining of M𝑖 will use training data that
represents K.

For the following, we assume, moreover, that R is given as HiC- or HaFiC-TSCs. For simplicity and without loss of generalization,
assume that K has the form of Kreq and is also a HiC or HaFiC-TSC. We refer to R’s Premise as Rdesc and to its Consequence as Rcons.
Likewise, we refer to K’s Premise as Kdesc and to its Consequence as Kcons. Table 4 gives an overview of the used denotations.

Example. (Requirement, Knowledge & Model) As a running example, let us consider the requirement R =“Always stop in a distance
of 2-15 meters to a static obstacle”. Let us assume that the initially trained model M𝑖 that does not satisfy R. It especially violates R
in scenarios where the friction is decreased due to rain. Further, we assume that inspection of the training data shows that these
scenarios were under-represented.

For our approach, the knowledge can simply state Kenv =“At some times it is rainy”. It could also specify required behavior in
terms of Kreq=“If it is rainy, brake taking the reduced friction into account”. We choose to consider Kreq here. In order to infuse Kreq
into M𝑖, we enrich the training data set by synthesized concrete scenarios where it is rainy. In the case of Supervised Learning, we
label concrete scenarios where Kreq holds as positive and scenarios where Kreq is violated as negative. In the case of Reinforcement
Learning, we choose an appropriate reward function [14] that rewards sufficiently early breaking on rainy roads. □

We differentiate between specifying descriptive knowledge, Kenv, about the environment (env-desc) and specifying knowledge
regarding the required behavior, (req). Both specification styles (env-desc) and (req) work for our approach and we can unify
them by deriving a knowledge specification Kdesc that characterizes the scenario context and knowledge specification on a (refined)
requirement Kreq.

Science of Computer Programming 244 (2025) 103297

13

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 6. Requirement: “Always stop at a distance between 2-15 meters to a static obstacle.”.

Fig. 7. Knowledge Kreq : “Always if it is rainy and the friction is then reduced, brake taking the reduced friction into account.”

In our running example, the unification leads to the same two knowledge scenarios for both knowledge styles, (env-desc) and
(req). We derive that we have to infuse the knowledge Kdesc =“There are scenarios where it is rainy” and scenarios that illustrate
Kreq =“If it is rainy, then brake and take the friction into account”.7

5.2.2. Testing for relevant knowledge

In order to answer “Is K relevant for infusion M𝑖, so that the new model M𝑛 then satisfies requirement R?” our testing procedure in
Section 6 does three tests Knowledge Infusion Test, Knowledge Preservation Test and Requirement Satisfaction
Test. In this testing procedure, abstract TSC scenarios play a central role.

• The Knowledge Infusion Test checks whether knowledge K has been infused. To this end, we check whether M𝑛 satisfies
the knowledge Kreq within the identified scenario context Kdesc. In other words, we check whether M𝑛 has grasped the refined
requirement on the infusion training data compilation.

• The Knowledge Preservation Test checks whether M𝑛 looses valuable knowledge of the initial model M𝑖. To this end, the
tests previously run on M𝑖 are rerun to check whether M𝑛 is a real improvement compared to M𝑖. In this test, the monitors for the
initial requirement R are used to evaluate M𝑛 ’s performance.

• The Requirement Satisfaction Test checks whether K causes the AI to satisfy the requirement R specified as TSC.

Example. The requirement R of our running example can be specified via a HaFiC as illustrated in Fig. 6. The activation mode is
Always. The first SV snapshot specifies the History of the Premise. It shows that the controlled car ego is in front of a static obstacle
in its lane. The second snapshot of the Premise specifies the future. It will be at a distance of less than 200 m, i.e., still in front of
the obstacle on the same lane. The third and the fourth snapshot build the Consequence. It expresses that (if ego starts facing the
obstacle and will stay there, then) ego must eventually come to a stand-still at a distance of 2-15 meters from the obstacle. The third
snapshot is a True Chart encoding “eventually”.

The knowledge Kreq can be specified via HaFiC-TSCs as visualized in Fig. 7. The activation mode is Always. The first SV snapshot
in the Premise expresses that it is raining within ego’s environment. While the second SV snapshot in the Premise expresses that ego’s
friction is reduced and a static obstacle is close by. The Premise hence expresses that first, it is raining, and then ego approaches
a static obstacle while the friction is reduced. The Consequence snapshot expresses that then ego has to start braking, taking into
account the reduced friction. □

5.3. Derivation of abstract knowledge scenarios

In Section 5.3.3, we describe the general process of using TSCs to specify abstract knowledge scenarios for knowledge infusion and
relevance testing. But before that, we list assumptions that we make for the relevance testing procedure (Section 5.3.1) and explain
how we can check whether these assumptions hold (Section 5.3.2).

5.3.1. Assumptions for the relevance testing procedure

For our testing procedure, we assume that the AI model is developed in a process where knowledge identification and knowledge
formalization have already been made. We assume to have an initial model M𝑖 and a retrained model M𝑛, requirements R, infused
knowledge K, and a scenario Scen for which the models are trained. We assume that R, K, Scen are specified as TSCs. We use the
denotations as in Table 2, p. 12, and Table 4, p. 13. We moreover make the following assumptions:

7 For (env-desc), Kreq is derived by combining Kdesc and R.

Science of Computer Programming 244 (2025) 103297

14

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 8. Abstract Knowledge TSC. Composition of the additional requirements Kreq and requirement R to describe the refined requirement for M𝑛 .

(Impl) Given requirements are formalizable as HiC or HaFiC TSCs.
We assume that requirements are formalized as TSCs in form of implications; that is, the resulting TSC is a HiC- or HaFiC-TSC
with activation mode always.8

(Scen) The knowledge is formalizable and considers a subscenario of Scen.
In knowledge identification and formalization, knowledge that is potentially scenario-relevant is identified that is supposed to
lead M𝑖 to satisfy R. Therefore, knowledge Kdesc identifies additional constraints on the scenario Scen.

(Ego) The Consequences of both requirement specifications R and Kreq specify the expected behavior of the ego vehicle.
(Ref) Kreq does not contradict R.

We assume the additional requirement Kreq does not contradict the initial requirement R. Since Kreq should lead to M𝑛 to
satisfying R, their conjunction, R and Kreq, should refine R.

Note that based on these assumptions, we assess the relevance of infused knowledge for a given AI model.

5.3.2. Abstract knowledge scenarios for testing requirement refinement

In this section, we describe how to check whether (Scen) and (Ref) holds. Since errors in the formalization of K can happen,
these checks can provide feedback to the Knowledge Formalisation Phase.

To ensure “The knowledge Kdesc considers a subscenario of Scen” (Scen), we examine we can synthesize concrete scenarios that satisfy
knowledge scenario Kdesc as well as the scenario Scen.9 Therefore we use a world model W10 that generates only concrete scenarios
of Scen. As the simulation engine can be seen as the world model in our context, it basically means that the simulator realizes a
world as described by the abstract scenario Scen. We then check whether we can synthesize a concrete scenario satisfying Kdesc. If
Kdesc is inconsistent with the scenario Scen, there is no concrete scenario ScenKdesc of world model W (or the simulation engine)
satisfying Kdesc. We hence can use the synthesis approach of Becker et al. [48]. In our running example, we have the knowledge
Kdesc=“Sometimes it is rainy.” If we mistakenly use a world model where it cannot rain, no concrete scenario is synthesizable for
Kdesc.

To show “Kreq does not contradict R” (Req), we construct a TSC that composes Kreq and R, as described below and illustrated in
Fig. 8. We then check whether the constructed TSC contains logical inconsistencies or physical implausibilities and check whether a
concrete scenario can be synthesized [48].

Fig. 8 illustrates how the requirement R and knowledge Kreq, i.e. the additions to the requirement R, are composed. The top
part thus abstractly specifies scenarios that satisfy the requirement R and satisfy R’s precondition. The bottom part analogously
abstractly specifies scenarios that satisfy the knowledge requirement Kreq and satisfy Kreq ’s Premise. Recall that Kreq ’s premise is
Kdesc comprising History and Future.

Since no triggering precondition is needed, the TSC of Fig. 8 does not have a Premise but is the Concurrency of two Composed
Charts, R and Kreq. Both, R and Kreq of Fig. 8, start with a True Charts. At the top, the History Composed Chart of R (𝑅𝐻) is followed
by the Concurrency of the Future of R (𝑅𝐹) and its Consequence (𝑅𝐶). The True Charts encode that we do not assume Kreq to be
synchronized with R, but that it adds to R in some way.

8 Note that (Impl) assumes that the activation mode is always. We make this assumption to simplify the following presentation. It is also possible to consider the
activation mode initial. The TSCs can be derived analogously.

9 If Kdesc allows scenarios outside of Scen, we use Kdesc ’:=Scen & Kdesc .
10 i.e., the world model underlying the TSCs cf. Section 5.1.

Science of Computer Programming 244 (2025) 103297

15

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 9. Abstract Knowledge TSC. Composition of the knowledge requirement Kreq and requirement R to describe the refined requirement for M𝑛 within the identified
relevant subscenario.

Fig. 10. Derivation of abstract knowledge scenario for targeted retraining and testing.

5.3.3. Abstract knowledge scenarios for testing relevant knowledge infusion

This section explains how we construct TSCs for the Knowledge Infusion Test. The Relevant Knowledge Infusion
Test checks whether the knowledge infusion of knowledge Kreq into M𝑛 was successful, i.e. whether M𝑛 has grasped the requirement
R and the knowledge requirement Kreq that was intended to be infused. To test this, we (i) construct a knowledge TSC combining
Kdesc and Rdesc from which concrete scenarios for a (ii) test suite are synthesized, which are then monitored to establish whether (iii)
M𝑛 behaves as required by Kcons and Rcons. Fig. 9 illustrates how the knowledge TSC is constructed. To construct the knowledge TSC,
the requirement Rdesc and knowledge Kreq are composed via the Concurrency. In other words, R and Kreq are composed, ignoring
their consequences Rcons and Kcons. We thus construct a TSC that encodes scenarios where M𝑛 is supposed to show the required
behavior but does not limit the scenarios any further. It thus remains the obligation of M𝑛 to display the required behavior to satisfy
the conjunction of Rcons and Kcons. We use the synthesis approach of Becker et al. [48] to derive a concrete test scenario. We then
use the monitoring approach of Grundt et al. [32] to check satisfaction of the requirement(’s consequence), i.e. Rcons and Kcons.

Note that the same construction can be used to synthesize (re-)training data for an identified knowledge gap. Moreover, for
Reinforcement Learning, Kcons can be integrated into the reward function of the training by reward shaping. The realization of
Reinforcement Learning based on TSCs is described in [14] and is used within the case studies presented in Section 7.

Example. Let us consider the systematic construction for AI Training and AI Evaluation (cf. Section 2) for our running example. We
have the system requirements specified via TSCs as given in Fig. 6 on p. 14) and we have the potentially relevant knowledge as
illustrated in Fig. 7 on p. 14. Our systematic derivation of an abstract knowledge scenario combining both specifications is illustrated
in Fig. 10. We can use this TSC for targeted adaption of AI Training environments and targeted AI Evaluation. □

5.3.4. Benefits of abstract knowledge scenarios

The presented abstract knowledge scenarios can be useful independent of our testing procedure. A targeted training hinges on
a good compilation of the training data set. Therefore, the specification of the different knowledge scenarios of the training set is
an important step. Provided we have a training set given and specified what abstract knowledge scenarios should be part of the
training set, we can examine the coverage of knowledge scenarios and how balanced the training data is regarding the different knowledge
scenarios. Moreover, when an initial AI model violates its requirements, testing whether the knowledge-infused AI model succeeds in
the knowledge scenarios can now be tested and monitored easily using our abstract knowledge scenarios since a formalization forms
the basis for automatable satisfiability checks. In addition, our formal abstract knowledge scenario specification can be checked for
consistency. The formal basis also ensures a high level of tool interoperability. As shown in Fig. 13, for example, TSC specifications
can be translated into the OpenX standard [51] to create the basis for selecting training and test environments or generating synthetic
data. In addition, a formal specification helps communication between stakeholders as it has no room for multiple interpretations.

Science of Computer Programming 244 (2025) 103297

16

D. Grundt, A. Rakow, P. Borchers et al.

Therefore, by formally specifying requirements in combination with identified knowledge, we also address practitioners’ challenges
C1 and C2 (cf. Section 4.1).

6. Relevance testing procedure

In the context of knowledge-infused AI, infusing relevant knowledge aims to yield an AI driving function that generalizes better
and can cope better with unknown situations. Thus, it is expected to satisfy requirements more reliably. Consequently, the training
is also expected to be faster and more cost-effective than solely data-driven machine learning.

Unfortunately, the path from Knowledge Identification over Knowledge Formalization to Knowledge Integration is rather long
(cf. Section 2). Current training and evaluation methods do not indicate whether the identification and formalization of infused
knowledge were correct, nor do they provide any concrete information on whether the identified knowledge was relevant to satisfy-
ing the corresponding requirement. We see the identification and the correct formalization as essential factors for creating beneficial
knowledge bases for AI driving functions and developing efficient and robust knowledge-infusion approaches.

We present a testing procedure that determines scenario-relevance indications (cf. Section 4.3.2, p. 10) of whether identified and
formalized knowledge is relevant for the AI. It thereby also helps to answer the question “Is the formalized knowledge beneficial for
the AI driving function?”. Scenario-relevance indications examine whether a given knowledge is relevant to the initial model M𝑖 in the
scenario Scen. Therefore, a test suite 𝒮 is executed.

6.1. Relevant knowledge infusion test procedure

For the reader’s convenience, we refer to Table 1 (page 6) for the denotations used in the following. We moreover refer to Table 4
and page 13 where the knowledge specification is discussed in more detail.

For the following, we denote with M𝑖 the initially trained AI model, which does not satisfy the requirement R.11 The AI model M𝑖
is trained further with data representing identified and formalized knowledge K in order to make it satisfy the requirement R. We call
the retrained model M𝑛.

The to-be-infused knowledge K aims to fix the shortcomings of M𝑖. If M𝑛 implements K and does not forget what M𝑖 already knew,
then it should satisfy R. As discussed in the previous section on p. 13, we assume that the potentially relevant knowledge K is specified
as a requirement Kreq and formalized via HiC-TSCs or HaFiC-TSCs. The Premise of Kreq, also called Kdesc, describes a subscenario
for which the consequence Kcons is required from the AI model. In our running example Kdesc =“It is rainy and the friction changes”,
Kcons =“Brake safely and take the changed friction into account.” and Kreq =“If it is rainy and the friction changes, then brake safely and
take the changed friction into account.”.

In the following, we use the more intuitive term “behavior” instead of the more formal term trajectory.

6.2. Relevant knowledge infusion test

In this section, we first give an overview of our testing procedure and then explain it in more detail using our running example.
Fig. 11 gives an overview of our Relevant Knowledge Infusion Test. Basically, we test relevance with the notion in mind:

“M𝑖 ̸⊧ R and M𝑖 ⊙ K ⊧ R⇒ K is relevant”. That is, if M𝑛 satisfies R, but M𝑛 without K, that is, M𝑖, does not satisfy R, we consider K
as relevant for R. Moreover, note that we usually cannot do exhaustive simulation, so that simulation will provide only relevant
indications as discussed in Section 4.3 p. 10.

The Relevant Knowledge Infusion Test is to be used after the steps training and infusion have been performed, i.e.
after the initial AI model M𝑖 has been trained to satisfy R but does not satisfy R and the new AI model M𝑛 has been trained by infusing
K into M𝑖.

In order to derive indications of whether knowledge K is irrelevant, contradicting previous knowledge, or is partly relevant, we
combine the outcomes of the three tests Knowledge Infusion, Knowledge Preservation and Requirement Satisfaction.

In the following, we use Table 5 to explain our testing procedure in more detail. We illustrate our testing procedure in Section 7.
To simplify the discussion, we first pretend to simulate exhaustively; hence, in Table 5, we pretend to have set inclusion ⊆ rather than
observed set inclusion ⊆𝒮 . We then discuss what the selective execution of test cases in simulation means for our testing procedure.

In column “K Infused” of Table 5, it is listed whether the new model M𝑛 behaves as required by K (𝕄n ⊆ 𝕂). This test checks
whether M𝑛 internalized the provided knowledge K. Reasons for failing these tests may be the inadequacy of the training, the model
itself or the knowledge.

Column “M𝑖 Preserved” lists whether M𝑛 preserves the successful behavior of the initial model M𝑖. To this end, we first determine
the test runs where M𝑖 satisfies R. We then check whether, in all these cases, M𝑛 satisfies R. If this test fails, the knowledge infusion
overwrote the knowledge K𝑖 that M𝑖 previously learned. Reasons may be that the model is not adequate (e.g., it may be too small to
produce the complex behavior and hence forgets) or the training caused overfitting, or the initial knowledge K𝑖 may contradict the
infused knowledge (e.g., the infused knowledge labels cases as appropriate for comfortable breaking while it was previously labeled
as hard breaking).

11 In case there is no such model, we pretend that there is a model M∗ that non-deterministically chooses its actions.

Science of Computer Programming 244 (2025) 103297

17

D. Grundt, A. Rakow, P. Borchers et al.
* Initially given*\

• R, the requirement
• M𝑖 , the trained AI model which does not satisfy R;
M𝑖 :=M∗ , if there is no initially trained model

• knowledge K that will be infused

* Knowledge Infusion Training*\

• M𝑛 = M𝑖 ⊙ K, i.e.M𝑖 is further trained by knowledge infusion of K

* Relevant Knowledge Infusion Test*\

1. Knowledge Infusion Test: Was K infused into M𝑛?
% It checks whether the attempt to infuse knowledge K via training
% into AI model M𝑛 was successful. Formally, it is examined whether
% 𝕄n ⊆𝒮 𝕂, i.e. whether the behaviors of M𝑛 satisfy the knowledge-
% requirement K.

2. Knowledge Preservation Test: Are the successes of 𝕄i preserved?

% It checks M𝑛 ≥𝒮,R M𝑖 , i.e. whether the M𝑛 did not forget initial knowledge K𝑖 . Therefore
% it checks, if M𝑛 satisfies R in all test cases for where M𝑖 satisfies R.

3. Requirement Satisfaction Test: Does M𝑛 satisfy the requirement R?
% It checks whether the M𝑛 is successful in all test cases of requirement
% R. Formally, it is examined whether 𝕄n ⊆𝒮 ℝ, i.e. whether the
% behaviors of 𝕄n satisfy the requirement ℝ.

return indications whether K is relevant/irrelevant/contradicting previous knowledge.

Fig. 11. Sketch of the overall Relevant Knowledge Infusion Test.

Table 5
Overview of indications provided by the Relevant Knowledge Infusion
Testing Procedure.

K Infused? M𝑖 Preserved? Req. R Satisfied? Indication
𝕄n ⊈𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K consistent?

M𝑛 adequate?
training adequate?

𝕄n ⊈𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K consistent?
M𝑛 adequate?
training adequate?

𝕄n ⊈𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ not possible

𝕄n ⊈𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ K consistent
(with K𝑖)?

𝕄n ⊆𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K consistent
(with K𝑖,R)? |𝕄i ∩ℝ| < |𝕄n ∩ℝ| K partly relevant? |𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ| K irrelevant?

𝕄n ⊆𝒮 𝕂 M𝑛 ≱𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ not possible

𝕄n ⊆𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊈𝒮 ℝ K sufficient? |𝕄i ∩ℝ| < |𝕄n ∩ℝ| K partly relevant? |𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ| K irrelevant?

𝕄n ⊆𝒮 𝕂 M𝑛 ≥𝒮,R M𝑖 𝕄n ⊆𝒮 ℝ K scenario-relevant

Column “Req. R Satisfied?” lists whether M𝑛 satisfies the requirement R. Possible reasons for failing this test (ignoring the previous
tests) are inadequacy of the model, training process or data.

Combining the test results gives us stronger indications of the reasons for failing the three tests. We discuss the possible combina-
tions one by one in the following.

Row 1: Suppose we established that M𝑛 does not internalize the knowledge K, it does not preserve the successes of M𝑖, and it does
not satisfy the requirement R. Since M𝑛 forgot what it initially knew (before knowledge infusing M𝑛 equals M𝑖) there is an indication
that M𝑛 did learn something. Hence, problems in the training data i.e. the consistency of knowledge, should be examined; the model
might also be inadequate. Since M𝑛 fails in cases where M𝑖 was successful, it is less likely that more training is beneficial.

Science of Computer Programming 244 (2025) 103297

18

D. Grundt, A. Rakow, P. Borchers et al.

Row 2: Let us assume M𝑛 does not internalize K (i.e. does not satisfy K) but preserves the successes of M𝑖 and it does not satisfy the
requirement R. We have no indication that M𝑛 learned something. Hence, the training data, the model, or the training might not be
adequate. Additional information is needed to rule out some of these cases.

Row 3 and 6: These cases are listed for combinatorial completeness. They are not possible since if M𝑛 fails in some cases according
to the preservation test (M𝑛 ≥𝒮,RM𝑖), then M𝑛 cannot satisfy R.

Row 4: Suppose we established M𝑛 does not internalize K, it preserves the successes of M𝑖 and it satisfies the requirement R. Since
M𝑛 learned to satisfy R there is an indication that M𝑛 did learn something. Hence, problems in the training data, i.e., the consistency
of knowledge, should be examined. The infused knowledge itself might be contradictory (which would mean that M𝑛 cannot satisfy
K), or contradicting previously learned knowledge K𝑖. If e.g. EWC is used (cf. Section 3), and the latter becomes more likely.

Row 5: Suppose we established M𝑛 internalizes K, it does not preserve the successes of M𝑖 and does not satisfy R. Since M𝑛 has
forgotten parts of K𝑖, there is an indication that M𝑛 did learn, but what M𝑛 learned is not enabling it to satisfy R. Hence, problems in
the training data, i.e., the consistency of knowledge, should be examined. The infused knowledge K seems to contradict previously
learned knowledge K𝑖. Whether or not the infused knowledge brings an improvement needs further analysis. We hence examine
whether M𝑛 or M𝑖 perform better wrt. satisfying R. As a measure, we use the number of behaviors that satisfy R. If M𝑛 has more
behaviors satisfying R, (at least part of) K might be relevant and K𝑖 might be inconsistent. The case “|𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ|”, i.e. that M𝑖
has not the right more behaviors satisfying R, indicates that K is not relevant.

Row 7: Suppose M𝑛 internalizes K, it preserves the successes of M𝑖 and does not satisfy R. Since M𝑛 has learned K there is an
indication that M𝑛 did learn, but what M𝑛 learned is not enabling it to satisfy R. There is no indication that knowledge is inconsistent.
Hence, whether the infused knowledge K is irrelevant or partly relevant should be examined. We hence examine whether M𝑛 or M𝑖
performs better wrt. satisfying the requirement R in terms of the number of behaviors that satisfy R. If M𝑛 has more, K might be
relevant but insufficient, and further knowledge might be required. Note, that “|𝕄i ∩ℝ| ≮ |𝕄n ∩ℝ|” in combination with M𝑛 ≥𝒮,R M𝑖,
means |𝕄i ∩ℝ| = |𝕄n ∩ℝ|. The case indicates that K is not relevant.

Row 8: Suppose M𝑛 internalizes K, it preserves the successes of M𝑖 and satisfies R. This case indicates that K is scenario-relevant.
Note that K is sufficient does not imply that all of K is necessary. There can be less specific knowledge K’ also conveying sufficient
knowledge with 𝕂 ⊆𝕂′.

Non-exhaustive exploration in simulation For practical reasons, a limited number of test cases are usually simulated. The coverage
criteria and selection of test cases are part of the test design, which is done by test engineers. Criticality of the respective requirements,
complexity of the system, and experience influence what test cases will be executed. To show that 𝕄 ⊄𝕄′ a single counter-example
suffices, while showing 𝕄 ⊆ 𝕄′ would require exhaustive exploration of all elements of 𝕄. This means that, e.g., in the row 5
with 𝕄n ⊆𝒮 𝕂 we could have M𝑛 ⊈𝒮 𝕂 as well and hence face the case of row 1. Our algorithm ignores this aspect, trusting on an
appropriate coverage. The key to using relevance indicators is to be aware of this limit. Databases that maintain relevant knowledge
should document the coverage criteria, and additional tests should be done if more evidence is needed.

Relevance notions While rows 1-4 indicate that K is irrelevant for this trained model in this scenario, only rows 5-8 specify cases
where indications can be derived that K is partly relevant. Only in row 8 we can derive that K is sufficient to satisfy the requirement
R, while in rows 5 and 7, part of K may be partly relevant, i.e., there are indications that K is improving the behavior of the AI model
but that K is not sufficient. Our testing procedure does not aim to determine the least required knowledge but leaves it open to the
test engineers whether they want to determine the least knowledge. Since the coverage in simulation and the model-world gap induce
uncertainties into the indicators, a systematic search for the lesser knowledge should be driven by domain knowledge.

7. Evaluation and application of relevance testing procedure

This section aims to demonstrate the overall approach (cf. Fig. 4), which supports research and industry addressing the question
RQ (motivated in Section 1 and Section 4.1:

RQ: Is the infused knowledge relevant for an AI model to fulfill its task?

To this end, the presented examples illustrate how different types of knowledge for safety requirements are formalized, infused
and evaluated regarding their relevance for the considered initial AI model. In addition, the selected examples show (i) that the
evaluation of relevance provides additional insights into the infused knowledge, namely that the knowledge is relevant and not, e.g.
purely statistically correlated, and (ii) how the relevance indications provide (causal) feedback as to why the contribution of relevant
knowledge was not successful.

For the first example, we used a prototypical reinforcement learning framework developed for the TSC language [14]. The other
two examples are theoretical and intended to demonstrate our approach’s versatility and generalizability.

7.1. Safe braking example

For the first example, we consider the requirement

R1 The system should maintain a safety distance of at least 2m and up to maximum distance of 15m from a static obstacle

Science of Computer Programming 244 (2025) 103297

19

D. Grundt, A. Rakow, P. Borchers et al.

and trained a Reinforcement Learning (RL) agent for R1.

7.1.1. Training specifications

For the training, we used a prototypical RL framework from [14]. We used a soft actor-critic algorithm, the Stable-Baseline3 [52]
and Gymnasium [53] for the training environment. Vehicle dynamics in the environment are modeled using the well-known kinematic
bicycle model [54]. The differential equations as in [14] were used for the dynamics of the agent system called ego:

�̇�ego = 𝑣ego cos(𝜃ego), �̇�ego = 𝑣ego sin(𝜃ego),

�̇�ego = 𝑣ego
tan(𝛿ego)
𝐿

, �̇�ego = 𝑎ego,
(1)

with a two-dimensional position for ego (𝑥ego , 𝑦ego) and obstacle (𝑥obs, 𝑦obs), a yaw heading 𝜃ego and a velocity 𝑣ego (𝜃obs and 𝑣obs
respectively). 𝐿 = 3.1 m denotes ego’s wheelbase, while in the environment, the lane has a constant width of 4m and a fixed position.

We enrich the kinematic model for the experiment by a friction coefficient (cf. Equation (2)).

𝐹𝑁 = massego ⋅ 𝑔,

𝐹𝑟 = 𝜇 ⋅ 𝐹𝑁,

𝑎_frictionego =
𝐹𝑟

massego
,

𝑎ego = 𝑎ego + (−𝑎_frictionego),

�̇�ego = 𝑣ego + 𝑎ego ⋅Δ𝑡

(2)

We first calculate the normal force 𝐹𝑁 with the gravitational acceleration 𝑔 and the mass of ego massego. We use massego =1700 kg.
We calculate the frictional force 𝐹𝑟 with a friction coefficient 𝜇 and 𝐹𝑁 . The frictional delay can be calculated with 𝐹𝑟 and massego.
The effect of the friction coefficient 𝜇 on the deceleration 𝑎ego can be calculated using the negated friction delay.

Since the agent selects 𝑎ego in the action space, the velocity in the next time step �̇�ego is calculated in the kinematic model as a
function of 𝑎ego, the current velocity 𝑣ego and Δ𝑡. The friction coefficient 𝜇 is considered by our extension in 𝑎ego and is therefore
included in calculating the velocity at time 𝑡+Δ𝑡.

Observation and action space Given the requirement R1 and the respective TSC specification depicted earlier in Fig. 6, we assume an
observation space of the agent, which only contains the distance between the agent system ego and the static obstacle obstacle, and
the velocity of ego.

The action space of the agent contains the acceleration of ego. The acceleration of ego, 𝑎ego , can range from −7m∕s2 to 4m∕s2. We
assume that obstacle is positioned in ego’s lane. Due to the given observation space and actions space, we have set the input parameter
for the steering angle 𝛿ego and 𝜃ego in Equation (1) constant in the middle of the lane and straight in the direction of obstacle for the
training.

Reward function We perform reward shaping for requirement R1 with two terms for the first training session:

𝑥obs − 𝑥ego > 2 m,

𝑥obs − 𝑥ego <𝑚𝑎𝑥(15 m, 𝑣ego).
(3)

The first term enforces a safety distance of 2m to be maintained. The second term states that the agent should maintain a maximum
distance equal to 𝑣ego at high speed or a maximum of 15m. When these terms are taken into account, an appropriate safety distance
to a stationary obstacle can be maintained without ego being able to stand any distance away for a high reward and at the same time
maintain the safety distance of 2m. Within the specified lower and upper limits for the distance, the reward (between 0 and 1) is
calculated as a function of ego’s speed using the modified sigmoid function Equation (4).

reward(𝑓) = 𝑐 ⋅
(

1
1 + 𝑒𝑏⋅(𝑓+𝑎)

)
+ 𝑑 (4)

The constant parameters 𝑎, 𝑏, 𝑐, and 𝑑 can be chosen according to the desired distribution of the reward, we used 𝑎 = 10, 𝑏 = 0.25,
𝑐 = 1, and 𝑑 = 0. Here, 𝑎 determines the distance to the inflection point, 𝑏 determines the function slope, 𝑐 determines the maximum
reward and 𝑑 is the minimum reward. The function 𝑓 represents the value evaluated in each training step according to Equation (3).

Training setting The ego agent is trained in episodes with distances ranging from 70m to 100m to obstacle, and starting speeds
between 10m∕s to 30m∕s. The agent is trained in 1 million steps, approximately 4000 episodes, with a learning rate of 0.02.

7.1.2. Example 1 - verification of M𝑖
After training, the agent was tested regarding requirement R1. The results show it does not satisfy R1 in all tests (cf. Section 4.3.2),

i.e.M𝑖 does not satisfy R in Scen vbt.

Science of Computer Programming 244 (2025) 103297

20

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 12. Test results of a trained agent M𝑖 . The agent was able to satisfy requirement R1 in test runs with a prevailing friction of 0.8 - dry road (triangles). In test runs,
in which the prevailing friction is 0.4 - wet road (squares) or 0.2 - icy road (circles), the agent violates R1. (For interpretation of the colors in the figure(s), the reader
is referred to the web version of this article.)

During testing, an environment was chosen that specifies a prevailing friction using a friction coefficient. The agent has been
tested in environments with the friction coefficients 0.8 - dry asphalt, 0.4 - wet asphalt (i.e., ≥ 1.5mm surface water), and 0.2 - icy
roads.

The test results are presented in Fig. 12. The distance between the ego and obstacle is on the x-axis, and ego’s velocity is on the
y-axis. Each point encodes a vector of final values of a single test run in term of ego’s speed, the distance between ego and obstacle.
The color of a point encodes ego’s initial velocity: red 30m∕s, orange 25m∕s, magenta 20m∕s, dark blue 15m∕s, and light blue
10m∕s. The agent was also tested with the same start distances to the obstacle as in training. This is not depicted separately.

Fig. 12 show that the initially trained agent does not comply with the safety distance of 2m, if the friction coefficient changes in
the environment, i.e. the trained agent collides with the obstacle on wet and icy roads.

7.1.3. Specification of abstract knowledge scenario

Based on the verification result of the initially trained agent M𝑖, it can be concluded that scenario-relevant knowledge about a
possible change in the friction coefficient and the associated necessary adaptation of braking distances could lead to satisfaction of
requirement R1. As a specification of this knowledge in relation to requirement R1, we use the earlier specified TSC specification
depicted in Fig. 7.

Combination of requirement and knowledge With the derivation of abstract knowledge scenarios presented in Section 5, we create a
formal foundation for the identification, integration, sharing, and archiving of scenario-relevant knowledge. With this, we address
the challenges of practitioners (cf. Section 4.1) with the benefits discussed in Section 5.3.4. Given the identified knowledge and the
requirement R1 as a TSC specification, we can combine the specifications as previously presented. The result is depicted in Fig. 10.

Based on the combined specification, concrete and simulatable scenarios can be derived using suitable tooling. As a result, e.g., in
Reinforcement Learning (RL), the identified knowledge gap can systematically expand the training environment. A tool for generating
concrete scenarios for simulation already exists for the TSC language [48]. Furthermore, we used a prototypical RL framework for
TSC specifications [14]. Considering Reinforcement Learning and testing, the consequences of the requirement specification and
knowledge specification shall be satisfied by an RL agent and, hence, should not be covered in the derived abstract knowledge scenario.
Our experiment uses the TSC consequences as the basis for an existing online monitoring of TSC specifications [32]. This enables an
efficient execution of the testing procedure presented in Section 6. Hence, it enables the execution of the defined Knowledge Infusion
Test and Requirement Satisfaction Test in each training and test run during execution. Furthermore, the Knowledge Preservation Test
can be performed directly after executing all training and test runs. The mentioned toolchain is depicted in Fig. 13.

Concretely, online monitors [32] can be synthesized based on TSC consequences. By applying our derivation and a resulting
abstract knowledge scenario, concrete scenarios can be derived and simulated in, e.g., CARLA [50] using the TSC2CARLA tool
chain [46]. The knowledge-infused agent can be integrated into the simulation environment, i.e., a vehicle (CARLA actor), and

Science of Computer Programming 244 (2025) 103297

21

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 13. Pipeline of relevance testing procedure incorporating TSC Runtime Monitoring [32] and TSC2CARLA toolchain [46].

executed in a concrete scenario simulation. Consequently, the monitors can provide verdicts on the knowledge conformance and
requirement satisfaction at runtime, i.e., the input for the presented relevance testing procedure.

7.1.4. Training and verification of M𝑛
Given the combined specification of requirement R1 and the identified knowledge, we adapted the training environment. First, we

used different but fixed friction coefficients in the training scenarios. Furthermore, we extended the observation space of the agent by
the prevailing friction coefficient. Finally, we trained an agent M𝑛 with the same learning rate, number of training steps, and episodes
as before.

In the verification process, we performed the relevance testing procedure presented outlined in Fig. 13. We still used the Gymna-
sium environment as training and test environment.

Based on our abstract knowledge scenario derivation, we were able to obtain monitors for all three tests Knowledge Infusion Test,
Knowledge Preservation Test, and Requirement Satisfaction Test and run them in each test run.

Example 2 - inadequate knowledge-infused training In the following, we show a knowledge-infused M𝑛 where the ⊙ has already been
applied, but inadequate training is present (less than 500,000 training steps). The result of each test run of this model is depicted in
Fig. 14. The results of the relevance testing procedure are as follows: After all test runs, the Knowledge Infusion Test gives the result
𝕄n ⊈𝒮 𝕂. The Knowledge Preservation Test yields M𝑛 ≥𝒮,R M𝑖. Finally, the Requirement Satisfaction Test yields 𝕄n ⊈𝒮 ℝ. This result
combination is reflected in row 2 of Table 5.

Given these results, we check the indications obtained. We can rule out that K is inconsistent, as the Knowledge Preservation Test
was successful and |𝕄i ∩ℝ| < |𝕄n ∩ℝ|. Thus, M𝑛 has learned to satisfy R in more test runs than M𝑖. We can also rule out the possibility
that, for example, the architecture of M𝑛 is not able to learn the infused knowledge since the knowledge to be considered is already
successfully applied in some test runs.

Hence, we conclude that M𝑛 seems to need more training steps.

Example 3 - scenario-relevant knowledge-infusion Given the indication for more training, the following is the verification result of the
knowledge-infused M𝑛 with more training steps. The results are depicted in Fig. 15.

The results display that for the Knowledge Infusion Test, the result is that the knowledge is successfully infused (cf. bottom half
of Table 5). An important aspect is that the knowledge-infused agent is checked in the same tests as the M𝑖. Therefore, we were also
able to perform the Knowledge Preservation Test in each test run and show that the success of M𝑖 and M𝑛 with less training steps is

Science of Computer Programming 244 (2025) 103297

22

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 14. Test results of knowledge-infused agent M𝑛 . Compared to the first verification with M𝑖 , the agent M𝑛 could not satisfy requirement R1 in all test runs with a
prevailing friction of 0.8 - dry road (triangles). However, the agent M𝑖 satisfied R1 in all test runs with a prevailing friction of 0.4 - wet road (squares). In addition, M𝑛
satisfies R1 in more than half of the test runs with a prevailing friction of 0.2 - icy road (circles).

Fig. 15. Test results of knowledge-infused agent M𝑛 with 1 million training steps. The agent M𝑛 satisfies requirement R1 in all test runs, including the three different
prevailing frictions of 0.8 - dry road (triangles), 0.4 - wet road (squares), and 0.2 - icy road (circles).

preserved by M𝑛 (cf. last two rows of Table 5). At the same time, we also performed the Requirement Satisfaction Test, with the result
that M𝑛 satisfies R in every test run (cf. last row of Table 5) including all prevailing frictions.

In conclusion, the second verification shows that the Knowledge Infusion Operation ⊙ was successful and that M𝑛 satisfies the
requirement R1 in Scen vbt. Since we can show 𝕄n ⊆𝒮 𝕂, M𝑛 ≥𝒮,R M𝑖 and 𝕄n ⊆𝒮 ℝ, we get an indication that K is scenario-relevant.

Indications for other cases If the knowledge infusion had not been successful, we had to check the upper half of Table 5, for example,
whether K is consistent at all, if M𝑛 has a inadequate architecture.

If the knowledge infusion were not successful and the result of the Knowledge Preservation Test were M𝑛 ≱𝒮,R M𝑖, we would receive
the indication that K seems to be inconsistent. In the other case, M𝑛 ’s architecture seems to be inadequate for infusing K.

Science of Computer Programming 244 (2025) 103297

23

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 16. TSC-specification of the correlation between dense fog resulting in short view distance and a change in the braking distance.

Given a successful knowledge infusion, if the result of the Knowledge Preservation Test is M𝑛 ≱𝒮,R M𝑖, we get indications that K
is partly relevant if |𝕄i ∩ ℝ| < |𝕄n ∩ℝ| or that K is irrelevant if |𝕄i ∩ ℝ| ≥ |𝕄n ∩ℝ|. If 𝕄n ⊈𝒮 ℝ, we get the indication that 𝕂 is
inconsistent.

Lastly, given a successful knowledge infusion and the result of the Knowledge Preservation Test is M𝑛 ≥𝒮,R M𝑖, we get indications
that K is partly relevant if |𝕄i ∩ℝ| < |𝕄n ∩ℝ| or that K seems irrelevant if |𝕄i ∩ℝ| ≥ |𝕄n ∩ℝ|. If 𝕄n ⊈𝒮 ℝ, we get the indication
that K seems to be insufficient.

Finally, by evaluating this example, we demonstrated the feasibility of our proposed relevance notion, TSC-based knowledge sce-
nario derivation, and the proposed relevance testing procedure to identify scenario-relevant knowledge systematically and formally.
Hence, these methods can help practitioners address the question of whether infused knowledge is relevant for an AI model to satisfy
its task.

7.2. Relevance vs. Statistical correlation

In the previous experiment, we show that we are able to obtain relevance indicators with our relevance testing procedure. Finally,
we obtained the indication that knowledge on the extension of the braking distance due to the present friction is scenario-relevant. In
order to show that relevance assessment for AI driving functions is important and differs from a common practice - using statistical
correlations from, e.g. accident databases and statistics [55–58], we show two concrete examples.

The goal of this is to show that it is not sufficient to assume that statistical correlations are scenario-relevant. Without this
indication, the potential benefits for i) validating early Knowledge-infusion phases, ii) generating a sustainable knowledge base and
iii) supporting the verification and development of Explainable AI methods are not available.

7.2.1. Dense fog, visibility and braking distance correlation

Let us consider the correlation of accident statistics that rear-end collisions are often accompanied by bad visibility [59]. Bad
visibility can occur, for example, due to snowfall or dense fog. We assume that the initially trained agent M𝑖 does not satisfy the
requirement in test runs with snowfall or bad visibility. In that case, this can lead to the mentioned correlation being considered
as relevant knowledge (and not the prevailing friction). The correlation that the braking distance changes in bad visibility could be
specified as a TSC as shown in Fig. 16:

Based on this specification and our derivation of abstract knowledge scenarios for training and testing purposes (composing R1
specification and this knowledge specification without the TSC consequence, cf. Fig. 9), we trained another agent using reinforcement
learning. This time, the agent does not receive friction but the current visibility as an observable variable.

The agent was trained with the same reward function and training parameters as before (see Section 7.1.2). The new observation
parameter split the same test runs as before (see Section 7.1.2 into test runs with good visibility (visibility = 100 m) and bad visibility
(visibility = 20 m). The test results are shown in Fig. 17.

The results of the relevance testing procedure are as follows. After all test runs, the agent is able to satisfy the requirement on
icy roads with bad visibility (circles), as well as on dry roads with good visibility (diamonds). Thus, the knowledge was successfully
integrated and the Knowledge Infusion Test gives the result 𝕄n ⊆𝒮 𝕂. The Knowledge Preservation Test yields M𝑛 ≥𝒮,R M𝑖. Finally,
the Requirement Satisfaction Test yields 𝕄n ⊈𝒮 ℝ. This result combination is reflected in row 7 of Table 5. We therefore check the
indications obtained. We can rule out that K is irrelevant, as the knowledge preservation test was successful and |𝕄i ∩ℝ| < |𝕄n ∩ℝ|.
Thus, M𝑛 has learned to satisfy R in more test runs than M𝑖. Next, K seems not sufficient since 𝕄n ⊈𝒮 ℝ. However, since |𝕄i ∩ℝ| <|𝕄n ∩ℝ|, we get the indication that K is partly-relevant.

The tests also show that the agent is not able to satisfy the requirement in the cases, which are not explicitly or implicitly specified
by the correlation but plausible combinations: icy road - good visibility (stars), and dry road - bad visibility (triangles). Due to the
same training duration as the agent in Fig. 15 and violation of the requirement R1 in specific test cases, we are able to conclude that
the correlation remains partly-relevant and knowledge is missing.

7.2.2. Snow, average speed and braking distance correlation

Let us consider the correlation that rear-end collisions are often associated with high environmental speed in bad weather condi-
tions [60]. This correlation specified as TSC is shown in Fig. 18:

Based on this specification and our derivation of abstract knowledge scenarios for training and testing purposes (composing R1
specification and this knowledge specification without the TSC consequence, cf. Fig. 9), we trained another agent using reinforcement
learning. This time, the agent does not receive friction but only the surrounding speed of other vehicles as an observable variable.
The agent was trained with the same reward function and training parameters as the final agent before (see Section 7.1.2). The new

Science of Computer Programming 244 (2025) 103297

24

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 17. Test results of knowledge-infused agent M𝑛 with partly-relevant correlation (visibility). The agent M𝑛 satisfies requirement R1 in test runs with icy road and bad
visibility (circles). This is the combination that the correlation expresses directly. The agent also satisfies R1 in test runs with dry road and good visibility (diamonds),
which is just the indirect case of the correlation. The problematic cases are the ones which are not explicitly or implicitly covered by the correlation. The agent does
not satisfy R1 in any test cases with icy roads and good visibility (stars) or dry roads and bad visibility (triangles). Additionally, the agent satisfies R1 in all test runs
with wet roads. Here, the agent was successful by applying the same driving strategy as for icy roads and bad visibility.

Fig. 18. TSC-specification of the correlation between snow, resulting in low average speed of surrounding traffic and a change in the braking distance.

Fig. 19. Test results of knowledge-infused agent M𝑛 with partly-relevant correlation (surrounding speed). The agent M𝑛 satisfies requirement R1 in test runs with icy
road and low average speed of surrounding traffic (circles). This is the combination that the correlation expresses directly. The agent also satisfies R1 in test runs with
dry road and high average speed of surrounding traffic (diamonds), which is just the indirect case of the correlation. The problematic cases are the ones which are not
explicitly or implicitly covered by the correlation. The agent does not satisfy R1 in any test cases with icy roads and high average speed of surrounding traffic (stars)
or dry roads and low average speed of surrounding traffic (triangles). Additionally, the agent satisfies R1 in all test runs with wet roads. Here, the agent was successful
by applying the same driving strategy as for icy roads and low average speed of surrounding traffic.

observation parameter split the same test runs as before (see Section 7.1.2 into test runs with low average speed (5 m∕s) and high
average speed (27 m∕s) of surrounding vehicles. The test results are shown in Fig. 19.

Science of Computer Programming 244 (2025) 103297

25

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 20. TSC-specification of our exemplary requirement R2 “The system should always maintain a lateral distance of at least 0.5m while turning”.

Given these tests, the relevance testing procedure yields the same results as for the correlation before: The agent is able to satisfy
the requirement on icy roads with low average surrounding speed (circles), as well as on dry roads with high average surrounding
speed (diamonds). Thus, the knowledge was successfully integrated and the Knowledge Infusion Test gives the result 𝕄n ⊆𝒮 𝕂. The
Knowledge Preservation Test yields M𝑛 ≥𝒮,R M𝑖. Finally, the Requirement Satisfaction Test yields 𝕄n ⊈𝒮 ℝ. This result combination
is reflected in row 7 of Table 5. We therefore check the indications obtained. We can rule out that K is irrelevant, as the knowledge
preservation test was successful and |𝕄i ∩ℝ| < |𝕄n ∩ℝ|. Thus, M𝑛 has learned something that satisfies R in more test runs than M𝑖.
Next, K seems not sufficient since 𝕄n ⊈𝒮 ℝ. However, since |𝕄i ∩ℝ| < |𝕄n ∩ℝ|, we get the indication that K is partly-relevant.

The tests also show that the agent is not able to satisfy the requirement in the non-specified but plausible combinations: icy road
and high average surrounding speed (stars), and dry road and low average surrounding speed (triangles). Due to the same training
duration as the agent in Fig. 15 and violation of the requirement in specific test cases, which explicitly does not include the correlation,
we are able to conclude that the correlation remains partly relevant and further knowledge is missing.

Note, that the agent generalizes in tests with wet roads (friction 0.4, not seen in training) and can satisfy the requirement using
the same driving style as for icy roads and bad visibility. With other and more complex environmental properties, it may be the case
that the knowledge preservation test results in |𝕄i ⊆ℝ| ≮ |𝕄n ⊆ℝ|, then K may even be irrelevant (see row 6 of Table 5). This can
happen, for instance, if only a small part of property combinations given by the correlation is covered in tests and a majority of results
do not satisfy the requirement. It can occur, for example, with correlations that are generally weak or unimportant in the specifically
selected test runs.

In the presented examples, enriching training data by identified statistical correlations leads to better results. However, these
correlations do not necessarily result from causal relations. Hence, they may lead to misguidance of the AI, as illustrated by the
observation of the surrounding average velocity of other traffic participants and its correlation to the necessary braking distance.
This shows that the pure use of statistical correlations may lead to better results, but the correlations are not equally relevant to the
scenario. Therefore, compared to statistical correlations, only relevance indications provide more insights and increase the means for
i) validating early Knowledge-infusion phases, ii) generating a knowledge base and iii) developing Explainable AI methods.

7.3. Safe turning - environmental knowledge specification

In the following, we introduce another example, which we will treat theoretically. We apply our methods for the second form of
abstract knowledge specification environmental descriptive (cf. Section 5.2), in order to show feasibility.

Let us assume the requirement

R2 The system should always maintain a lateral distance of at least 0.5m while turning.

Requirement R2 TSC-specification The TSC specification of R2 is depicted in Fig. 20. As before, we use a HaFiC-TSC and specify that
if ego (green car) has approached a T-junction and turns, that ego should keep a lateral distance of 0.5 meter while turning.

Knowledge TSC-specification Let us assume that a trained agent does not satisfy R2 in all test runs, i.e., M𝑖 does not satisfy R. In the test
runs, the agent could not maintain the required lateral distance due to weather-related environmental changes and sometimes swerved
with the tail. Furthermore, this behavior occurs on wet and icy surfaces. In contrast to our first experiment, let us assume that we
cannot obtain information about the prevailing friction. Therefore, we demonstrate how to utilize temporal properties about specific
environmental descriptive knowledge using TSCs. Specifically, we utilize the current outside temperature and weather information.

Further assume that by analyzing test runs, it is recognized that the lateral velocity in turns is not adjusted depending on the
current surface. As a result, the agent did not satisfy R2 in test runs with wet and icy surfaces. The maximum lateral acceleration in
such weather conditions was identified as potentially scenario-relevant knowledge. The environmental descriptive specification for this
knowledge is depicted in Fig. 21.

Combination of requirement and knowledge Based on the TSC specification of requirement R2 and potentially scenario-relevant knowl-
edge, we can perform our abstract knowledge scenario derivation once again. In doing so, we provide a formal basis for closing the
identified knowledge gap and for systematic integration and testing of the potentially scenario-relevant knowledge. With that, we
address the challenges of practitioners (cf. Section 4.1) with the benefits discussed in Section 5.3.4.

Applying our derivation results in the TSC specification depicted in Fig. 22. Using the derived abstract knowledge scenario, we thus
systematically offer a formal basis for targeted retraining and testing of, e.g., an RL agent specifically in the identified knowledge gap.
Furthermore, based on the TSC specification and the presented tooling, we can again perform the three tests of the relevance testing
procedure for each test run. In this example, the knowledge infusion test would check whether M𝑛 adjusts the lateral acceleration
under specified weather conditions. In this example, the Knowledge Preservation Test would check whether M𝑖 maintains the lateral

Science of Computer Programming 244 (2025) 103297

26

D. Grundt, A. Rakow, P. Borchers et al.

Fig. 21. TSC specification of our identified knowledge “The maximum lateral acceleration on icy roads should not exceed 3m∕s2. If weather conditions indicate icy roads,
do not exceed a maximum lateral acceleration of 3m∕s2 while turning.”. Given a preceding abstract scenario phase (history), where it rained, and the environment
temperature was below 0 ◦C. In addition, less time has passed than needed for the road to be free of ice or dry. Consequently, given by the identified knowledge, while
ego is turning (future), do not exceed a maximum lateral acceleration of 3m∕s2 (consequence).

Fig. 22. Result of abstract knowledge scenario derivation combining requirement R2 and potentially scenario-relevant knowledge.

distance of 0.5m in the test cases in which M𝑖 was already able to do so. Finally, the Requirement Satisfaction Test would check
whether M𝑛 maintains the lateral distance in each test run of Scen. The respective indications of any combination of test results
can be found in Table 5. In conclusion, with this example we presented and theoretically discussed the feasibility of our abstract
knowledge specification with environmental descriptive knowledge.

7.4. Summary

In this case study, we used two examples to show how the presented methods can be combined and present our methods’ unique
values. We demonstrated the systematic derivation of abstract knowledge scenarios using Traffic Sequence Charts for both examples.
Concretely, we have specified both types of abstract knowledge scenarios Kdesc and Kreq. Furthermore, we have executed the rele-
vance testing procedure and showed that our method can i) provide several indications and ii) differentiate between causal relations
and statistical correlation. For the first example, we trained a Reinforcement Learning agent into which knowledge was integrated
by reward shaping. We used our methods to show that the identified and integrated knowledge is scenario-relevant according to our
definition. Additionally, we trained two new agents and infused knowledge based on statistical correlation, which can be identified
as potentially scenario-relevant for the first considered requirement. Our relevance testing procedure indicated that the statistical
correlation is only partly relevant compared to the scenario-relevant knowledge about prevailing friction. Taking into account the
assumptions for the specification of R and Kreq (see Section 5), we can check all spatio-temporal properties that are specified as TSC
and are observable for relevance to the performance of a knowledge-infused AI about the satisfaction of requirements. For the second
example, we provided specifications of R and Kdesc and discussed the application of the relevance testing procedure theoretically.
Overall, we demonstrated that our methods can support practitioners in answering whether infused knowledge is relevant for an AI
model to satisfy its task. Based on these methods, we help address ML practitioners’ current challenges (cf. Section 4.1).

8. Related work

In the following, we present and discuss related work in knowledge-infused AI, specification of traffic scenarios, and scenario-based
testing, including monitoring.

8.1. Knowledge-infused AI

Infusing prior knowledge into an AI was already realized by Towell et al. [26] in 1994. In its work, propositional logic rules were
infused into a feed-forward network. With the revival of AI in the following years, the newly developed neural network types such
as Bayesian [61] or support vector machines [62] were also investigated to determine how mathematical and physical knowledge
can be infused. AI’s tasks became increasingly diverse due to technical and methodological developments. This led to the desire
to infuse more complex mathematical and physical knowledge into an AI, e.g., for non-linear classifications [63]. In 2015, Reich
et al. integrated mathematical and physical knowledge into Bayesian networks for forecasting and predictions in their work [64].

Science of Computer Programming 244 (2025) 103297

27

D. Grundt, A. Rakow, P. Borchers et al.

In digitalization and Industry 4.0, AI has also been used in manufacturing and attempts to infuse physical and mathematical prior
knowledge, e.g., infusing monotonicity constraints using reward shaping [16].

Due to the rapid development of new network types and training methods, the research field of knowledge-infused AI has also
focused on suitable solutions for infusing prior knowledge. Here, solutions exist, e.g., for auto-encoders [65], convolutional net-
works [66] and generative models [67], as well as for the training methods Reinforcement Learning [13,68] and Active Learning [18].
The field and the term physics-guided AI have been established based on these developments and experiences gained in infusing
mathematical and physical knowledge. This includes all knowledge-infused AI approaches that deal with physical and mathematical
knowledge.

Nowadays, the strengths of AI should also be utilized for highly automated and autonomous driving. In addition to physical and
mathematical knowledge, handing over essential driving functions and decisions to an AI requires knowledge of traffic rules, social
and societal norms, and ethics in the interaction between the real environment and public transport. Unfortunately, such knowledge
is often not formalized. Therefore, a current challenge in knowledge-infused AI driving functions is the formalization of knowledge
that is present in natural language. The works from Collenette et al. [69], Borges et al. [34], Westhofen et al. [33] and also the
research project KI Wissen [7] have dealt with how traffic rules can be formalized so that they can be used for the development of
such systems.

To use AI driving functions in public transport, a certain level of acceptance and trust in such systems must also be achieved [8].
On the one hand, various studies are dealing with a suitable conformity test for verifying knowledge-infused AI [36,30]. Furthermore,
in cooperation with the research field of Explainable AI, attempts are being made to identify what knowledge has been learned by
an AI [18,70] in order to be able to explain decisions made by an AI to, e.g., engineers or vehicle drivers [71].

Our developed relevance testing procedure and systematic method for generating reasonable abstract knowledge scenarios shall
support these challenges. By identifying whether an AI applies the infused knowledge and, at the same time, satisfies system re-
quirements, we support the verification and validation of knowledge-infused AI. Furthermore, with the identification of relevant
knowledge, we provide a basis for designing and verifying explanations in the research field of Explainable AI.

8.2. Scenario specification

Two paths for the specification of traffic scenarios have been established in the literature. The first is the textual specification. An
established standard is OpenSCENARIO [51] from the Association for Standardization of Automation and Measuring Systems (ASAM).
This standard can be used to specify concrete scenarios with specific maneuvers. Well-known simulation platforms such as CARLA [50]
and IPG Carmaker [72] already offer robust APIs for simulating OpenSCENARIO specifications. The Scenic framework [73], which
focuses on the derivation of concrete and simulatable test scenarios, enables the definition of maneuvers and abstract scenarios using
a probabilistic programming language. The simulation platform CARLA [50] offers a Python API, which enables the specification of
concrete, directly simulatable scenarios.

In contrast to the established textual specification languages, our developed method for generating abstract test scenarios uses the
visual yet formal specification language Traffic Sequence Charts (TSCs) [24]. As motivated in Section 5, we see a visual specification
of traffic scenarios as an advantage when working with non-computer scientists. Especially in the shift of responsibility for essential
driving decisions from humans to AI driving functions, it will be necessary to involve interdisciplinary experts to infuse social and
societal norms and psychological or physiological aspects into an AI. We believe that a visual specification can help with interdisci-
plinary communication and thus avoid specification errors, facilitate final cross-checks of a specification, and make the extension of
a specification more efficient.

Given a formal specification and a map, Klischat et al. in [74] visually specify traffic scenarios using Lanelets. Logical predicates
are converted into mixed-integer logic, and a quadratic optimization problem is formed, the solutions of which are concrete scenarios.
In contrast, we use Traffic Sequence Charts to specify formal specifications directly linked to a traffic scenario, and we do not have
to commit to a specific map. Multi-Lane Spatial Logic (MLSL) [75] is a further visual specification language. The language offers the
possibility to specify system requirements for system controllers in cooperative systems on urban road intersections. Unlike TSCs,
which focus on spatio-temporal properties between road users over time, MLSL so far solely is able to reason about movement
authority. Goyal et al. specify abstract scenarios in [76] using a 3x3 grid editor. The developed VIVAS framework thus enables
the specification of LTL-based abstract scenarios focusing on discrete-time system requirements. Considering the possible upcoming
interdisciplinary requirement elicitation of an AI driving function for essential driving decisions, system requirements are specified
intuitively in continuous time. Using TSCs, continuous-time system requirements [25] can be specified in abstract scenarios and
consequently discretized for concrete test scenarios. In addition, the TSC language also offers the option of discrete-time specifications.

8.3. Scenario-based testing and monitoring

Scenario-based testing is an established methodology [77]. In combination with simulation, the method offers a robust, cost- and
time-efficient solution for developing highly automated and autonomous driving functions for strategic testing to verify compliance
with system requirements [29]. With the development of AI driving functions, the black box property, and huge input space, formal
verification methods are often inefficient or not applicable at all. Despite this, to check the system behavior for compliance with
system requirements, the field provides solutions for runtime monitoring, which checks the behavior of a driving function at runtime
in a simulated test scenario. There are two approaches here: Declarative temporal languages such as linear temporal logic (LTL) and
signal temporal logic (STL). They offer the possibility to formalize system requirements with temporal properties, and there already

Science of Computer Programming 244 (2025) 103297

28

D. Grundt, A. Rakow, P. Borchers et al.

exists a wide range of monitoring applications [78–80]. Extensions for the specification of spatial properties, e.g., STSL [81] and
SpaTeL [82], and SSTL [83] have also been developed. The synthesis of runtime monitors based on these languages already exists
for various areas such as program verification and the verification of cyber-physical systems [84]. Zapridou et al. present in [85] a
runtime monitoring based on STL-based system requirements for an Adaptive Cruise Control of an autonomous vehicle. Their goal
was to monitor the robustness of PID controller requirements (invariant over speed and distance) inside the vehicle. Another example
is the framework called BARK, presented in [86], which synthesizes monitors for LTL-based traffic rules in order to monitor traffic
behavior at runtime.

The second approach is based on executable languages [84] such as automata. A wide range of solutions also exists in this
area [3,87]. In addition, many translation schemes are based on declaratively specified system requirements [88,89]. Recently,
Goyal et al. presented a conceptual runtime monitoring for abstract test scenarios based on LTL-based system requirements [76] and
synthetization to state machines using the NuRV framework [90]. Since we use the visual yet formal specification language TSC for
specification of system requirements and knowledge in abstract scenarios, we also use the existing TSC runtime monitoring [32] (new
developments are submitted in the same Special Issue as this work). With our relevance testing procedure utilizing the combination
of scenario-based testing and runtime monitoring, we show a direction in which the research field can develop solutions regarding
the trustworthiness and system acceptance of knowledge-infused AI driving functions.

9. Conclusion and future work

This work is concerned with assessing the relevance of prior knowledge infused into an AI driving function to enable requirement
satisfaction. For the first time, established notions of relevance in the field of Information Retrieval (IR) are related to development
phases of knowledge-infused AI driving functions, and a suitable notion of relevant knowledge will be derived. A procedure for scenario-
based testing is presented. This procedure checks knowledge conformance and requirement satisfaction of knowledge-infused AI
driving functions. Based on this, we provide statements about the validity of previous development phases and indicate the relevance
of infused knowledge of an AI driving function. Additionally, we present a systematic method for generating abstract knowledge
scenarios based on Traffic Sequence Charts (TSCs). They also enable an efficient application of our relevance testing procedure. Finally,
we presented a case study of the systematic derivation of abstract knowledge scenarios in combination with the presented relevance
testing procedure. We demonstrated the feasibility of combining our presented methods and the unique value of distinguishing
causal relations that are relevant for satisfying our example requirements from statistical correlations. These methods provide a
formal combination of requirements and identified knowledge, as well as a testing procedure addressing the current challenges of
ML practitioners.

The relevance testing procedure can be used in scenario-based development of knowledge-infused AI that uses prior domain
knowledge to satisfy its requirements. This procedure can currently only be used for comparisons of specified behavior sets. Further-
more, the systematic derivation of abstract knowledge scenarios can be used if both a requirement specification and a knowledge
specification are available as TSCs. Currently, the systematic derivation has been developed solely for the TSC language.

With this work, we provide a valuable contribution to the successful application of knowledge-infused AI driving functions in
public transportation. Our notion of relevant knowledge for knowledge-infused AI, the relevance testing procedure, and the systematic
method for generating abstract knowledge scenarios are able to address current challenges in the development and analysis of such
knowledge-infused AI driving functions. Identifying relevant knowledge provides a foundation for knowledge bases that can be used
for future AI developments and for the design and verification of explanations in the research field of Explainable AI.

In the future, the usefulness and integration of the presented relevance testing procedure can be evaluated using the presented
toolchain in a larger case study developing a complex AI driving function. In addition, our relevance testing procedure could also be
extended to handle metrics measuring how robust a requirement is satisfied. Consequently, relevant knowledge could be identified
that improves existing AI driving functions to satisfy requirements more robustly. For example, permanently driving on the lane but
close to the lane separator is less acceptable compared to driving mostly in the middle of the lane, although both would satisfy the
requirement to stay on the lane. Given relevant knowledge, it can be investigated which different representations and information (i.e.,
used dataset, architecture, test suite with coverage information, etc.) a knowledge base needs to be widely applicable. Furthermore,
it can be investigated how relevant knowledge can be used for the explanation of AI behavior. In addition, a method for validating
explanations based on relevant knowledge can be developed.

CRediT authorship contribution statement

Dominik Grundt: Writing – original draft, Visualization, Validation, Methodology, Investigation, Conceptualization. Astrid
Rakow: Writing – review & editing, Methodology, Formal analysis, Conceptualization. Philipp Borchers: Data curation. Eike
Möhlmann: Writing – review & editing, Validation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Science of Computer Programming 244 (2025) 103297

29

D. Grundt, A. Rakow, P. Borchers et al.

Acknowledgements

The research leading to these results is funded by the German Federal Ministry for Economic Affairs and Climate Action within the
project “NXT GEN AI METHODS – Generative Methoden für Perzeption, Prädiktion und Planung” (grant agreement No. 19A23014G).

References

[1] Y.K. Dwivedi, A. Sharma, N.P. Rana, M. Giannakis, P. Goel, V. Dutot, Evolution of artificial intelligence research in technological forecasting and social change:
research topics, trends, and future directions, Technol. Forecast. Soc. Change 192 (2023) 122579, https://doi.org/10.1016/j.techfore.2023.122579.

[2] H. Elkholy, A. Azar, A. Shahin, O. Elsharkawy, H. Hassan, Path Planning of a Self Driving Vehicle Using Artificial Intelligence Techniques and Machine Vision,
2020, pp. 532–542, https://doi.org/10.1007/978-3-030-44289-7_50.

[3] A. Gupta, A. Anpalagan, L. Guan, A.S. Khwaja, Deep learning for object detection and scene perception in self-driving cars: survey, challenges, and open issues,
Array 10 (2021), https://doi.org/10.1016/j.array.2021.100057.

[4] W. Schwarting, J. Alonso-Mora, D. Rus, Planning and decision-making for autonomous vehicles, Ann. Rev. Control Robot. Auton. Syst. 1 (2018) 187–210, https://
doi.org/10.1146/annurev-control-060117-105157.

[5] Y. Ma, Z. Wang, H. Yang, L. Yang, Artificial intelligence applications in the development of autonomous vehicles: a survey, IEEE/CAA J. Autom. Sin. 7 (2020)
315–329, https://doi.org/10.1109/JAS.2020.1003021.

[6] C.M. de Melo, A. Torralba, L. Guibas, J. DiCarlo, R. Chellappa, J. Hodgins, Next-generation deep learning based on simulators and synthetic data, Trends Cogn.
Sci. 26 (2) (2022) 174–187, https://doi.org/10.1016/j.tics.2021.11.008.

[7] K.I. Wissen, Automotive AI powered by knowledge, https://www.kiwissen.de, 2024.
[8] M. Gaur, A. Sheth, Building trustworthy NeuroSymbolic AI systems: consistency, reliability, explainability, and safety, AI Mag. 45 (1) (2024) 139–155, https://

doi.org/10.1002/aaai.12149.
[9] P.M. Fernandes, F.C. Santos, M. Lopes, Norms for beneficial A.I.: a computational analysis of the societal value alignment problem, AI Commun. 33 (3–6) (2020)

155–171, https://doi.org/10.3233/AIC-201502.
[10] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage,

J. Schuecker, Informed machine learning – a taxonomy and survey of integrating prior knowledge into learning systems, IEEE Trans. Knowl. Data Eng. 35 (1)
(2023) 614–633, https://doi.org/10.1109/TKDE.2021.3079836.

[11] A. Borghesi, F. Baldo, M. Milano, Improving deep learning models via constraint-based domain knowledge: a brief survey, arXiv:2005.10691 [abs], https://
api.semanticscholar.org/CorpusID:218763650, 2020.

[12] E. de Bézenac, A. Pajot, P. Gallinari, Deep learning for physical processes: incorporating prior scientific knowledge, J. Stat. Mech. Theory Exp. 2019 (12) (2019)
124009, https://doi.org/10.1088/1742-5468/ab3195.

[13] S.L. Jurj, D. Grundt, T. Werner, P. Borchers, K. Rothemann, E. Möhlmann, Increasing the safety of adaptive cruise control using physics-guided reinforcement
learning, Energies 14 (22) (2021), https://doi.org/10.3390/en14227572.

[14] P. Borchers, W. Hagemann, D. Grundt, T. Werner, J. Müller, Using traffic sequence charts for knowledge formalization and AI-application, in: K. Arai (Ed.),
Intelligent Systems and Applications, Springer Nature, Switzerland, Cham, 2024, pp. 198–220, https://doi.org/10.1007/978-3-031-66428-1_12.

[15] B. Yet, Z. Perkins, N. Fenton, N. Tai, W. Marsh, Not just data: a method for improving prediction with knowledge, J. Biomed. Inform. 48 (2014) 28–37, https://
doi.org/10.1016/j.jbi.2013.10.012.

[16] M.v. Kurnatowski, J. Schmid, P. Link, R. Zache, L. Morand, T. Kraft, I. Schmidt, J. Schwientek, A. Stoll, Compensating data shortages in manufacturing with
monotonicity knowledge, Algorithms 14 (12) (2021), https://doi.org/10.3390/a14120345.

[17] R. Kaplan, C. Sauer, A. Sosa, Beating Atari with natural language guided reinforcement learning, arXiv:1704.05539 [abs], https://api.semanticscholar.org/
CorpusID:6022828, 2017.

[18] J. Wörmann, et al., Knowledge augmented machine learning with applications in autonomous driving: a survey, arXiv:2205.04712, 2023.
[19] H.-M. Heyn, E. Knauss, I. Malleswaran, S. Dinakaran, An investigation of challenges encountered when specifying training data and runtime monitors for safety

critical ml applications, in: A. Ferrari, B. Penzenstadler (Eds.), Requirements Engineering: Foundation for Software Quality, Springer Nature Switzerland, Cham,
2023.

[20] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera,
Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion 58 (2020) 82–115, https://
doi.org/10.1016/j.inffus.2019.12.012.

[21] M. Schwammberger, V. Klös, From specification models to explanation models: an extraction and refinement process for timed automata, in: M. Luckcuck, M.
Farrell (Eds.), Proceedings Fourth International Workshop on Formal Methods for Autonomous Systems (FMAS) and Fourth International Workshop on Automated
and verifiable Software sYstem DEvelopment (ASYDE), FMAS/ASYDE@SEFM 2022, and Fourth International Workshop on Automated and verifiable Software
sYstem DEvelopment (ASYDE), Berlin, Germany, 26th and 27th of September 2022, in: EPTCS, vol. 371, 2022, pp. 20–37, https://doi.org/10.4204/EPTCS.371.2.

[22] ISO13586:2000(E), Scenario-Based Safety Evaluation Framework for Automated Driving Systems, Standard, International Organization for Standardization,
Geneva, CH, Mar. 2023.

[23] C. Neurohr, L. Westhofen, T. Henning, T. de Graaff, E. Möhlmann, E. Böde, Fundamental considerations around scenario-based testing for automated driving,
in: 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 121–127, https://doi.org/10.1109/IV47402.2020.9304823.

[24] W. Damm, S. Kemper, E. Möhlmann, T. Peikenkamp, A. Rakow, Traffic Sequence Charts - from Visualization to Semantics, 2017, https://doi.org/10.13140/RG.
2.2.15190.42563.

[25] J.S. Becker, Partial consistency for requirement engineering with traffic sequence charts, in: Combined Proceedings of the Workshops at Software Engineering
2020 Co-located with the German Software Engineering Conference 2020 (SE 2020), Innsbruck, Österreich, in: CEUR Workshop Proceedings, vol. 2581, March
05, 2020, http://ceur-ws.org/Vol-2581/ase2020paper1.pdf, 2020.

[26] G.G. Towell, J.W. Shavlik, Knowledge-based artificial neural networks, Artif. Intell. 70 (1) (1994) 119–165, https://doi.org/10.1016/0004-3702(94)90105-8.
[27] P. Hamet, J. Tremblay, Artificial intelligence in medicine, in: Insights into the Future of Medicine: Technologies, Concepts, and Integration, Metabolism 69 (2017)

S36–S40, https://doi.org/10.1016/j.metabol.2017.01.011.
[28] J. Perez-Cerrolaza, J. Abella, M. Borg, C. Donzella, J. Cerquides, F.J. Cazorla, C. Englund, M. Tauber, G. Nikolakopoulos, J.L. Flores, Artificial intelligence for

safety-critical systems in industrial and transportation domains: a survey, ACM Comput. Surv. 56 (7) (Apr. 2024), https://doi.org/10.1145/3626314.
[29] C. Neurohr, L. Westhofen, M. Butz, M. Bollmann, U. Eberle, R. Galbas, Criticality analysis for the verification and validation of automated vehicles, IEEE Access

(2021) 1, https://doi.org/10.1109/ACCESS.2021.3053159.
[30] K. Manas, A. Paschke, Semantic role assisted natural language rule formalization for intelligent vehicle, in: A. Fensel, A. Ozaki, D. Roman, A. Soylu (Eds.), Rules

and Reasoning, Springer Nature, Switzerland, Cham, 2023, pp. 175–189, https://doi.org/10.1007/978-3-031-45072-3_13.
[31] C. Szegedy, A promising path towards autoformalization and general artificial intelligence, in: C. Benzmüller, B. Miller (Eds.), Intelligent Computer Mathematics,

Springer International Publishing, Cham, 2020, pp. 3–20, https://doi.org/10.1007/978-3-030-53518-6_1.

Science of Computer Programming 244 (2025) 103297

30

https://doi.org/10.1016/j.techfore.2023.122579
https://doi.org/10.1007/978-3-030-44289-7_50
https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1109/JAS.2020.1003021
https://doi.org/10.1016/j.tics.2021.11.008
https://www.kiwissen.de
https://doi.org/10.1002/aaai.12149
https://doi.org/10.1002/aaai.12149
https://doi.org/10.3233/AIC-201502
https://doi.org/10.1109/TKDE.2021.3079836
https://api.semanticscholar.org/CorpusID:218763650
https://api.semanticscholar.org/CorpusID:218763650
https://doi.org/10.1088/1742-5468/ab3195
https://doi.org/10.3390/en14227572
https://doi.org/10.1007/978-3-031-66428-1_12
https://doi.org/10.1016/j.jbi.2013.10.012
https://doi.org/10.1016/j.jbi.2013.10.012
https://doi.org/10.3390/a14120345
https://api.semanticscholar.org/CorpusID:6022828
https://api.semanticscholar.org/CorpusID:6022828
http://refhub.elsevier.com/S0167-6423(25)00036-X/bibE0F770979E4A219C1F9055FE0F4DDEABs1
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib957788A1E33DE7FE6D4D30136B641DE9s1
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib957788A1E33DE7FE6D4D30136B641DE9s1
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib957788A1E33DE7FE6D4D30136B641DE9s1
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.4204/EPTCS.371.2
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib6BACDF2DE1A8D7CCE451BAB340C78113s1
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib6BACDF2DE1A8D7CCE451BAB340C78113s1
https://doi.org/10.1109/IV47402.2020.9304823
https://doi.org/10.13140/RG.2.2.15190.42563
https://doi.org/10.13140/RG.2.2.15190.42563
http://ceur-ws.org/Vol-2581/ase2020paper1.pdf
https://doi.org/10.1016/0004-3702(94)90105-8
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.1145/3626314
https://doi.org/10.1109/ACCESS.2021.3053159
https://doi.org/10.1007/978-3-031-45072-3_13
https://doi.org/10.1007/978-3-030-53518-6_1

D. Grundt, A. Rakow, P. Borchers et al.

[32] D. Grundt, A. Köhne, I. Saxena, R. Stemmer, B. Westphal, E. Möhlmann, Towards runtime monitoring of complex system requirements for autonomous driving
functions, in: M. Luckcuck, M. Farrell (Eds.), Proceedings Fourth International Workshop on Formal Methods for Autonomous Systems (FMAS) and Fourth
International Workshop on Automated and verifiable Software sYstem DEvelopment (ASYDE), Berlin, Germany, 26th and 27th of September 2022, in: Electronic
Proceedings in Theoretical Computer Science, vol. 371, Open Publishing Association, 2022, pp. 53–61, https://doi.org/10.4204/EPTCS.371.4.

[33] L. Westhofen, I. Stierand, J.S. Becker, E. Möhlmann, W. Hagemann, Towards a congruent interpretation of traffic rules for automated driving - experiences
and challenges, in: G. Borges, K. Satoh, E. Schweighofer (Eds.), Proceedings of the International Workshop on Methodologies for Translating Legal Norms into
Formal Representations (LN2FR 2022) in Association with the 35th International Conference on Legal Knowledge and Information Systems (JURIX 2022), 2022,
pp. 8–21, https://elib.dlr.de/193009.

[34] G. Borges, K. Satoh, E. Schweighofer, Proceedings of the international workshop on methodologies for translating legal norms into formal representations
(LN2FR 2022) in association with 35th international conference on legal knowledge and information systems (JURIX 2022), CoRR, arXiv:abs/2305.12203,
arXiv:2305.12203, https://doi.org/10.48550/ARXIV.2305.12203, 2023.

[35] A.H. Khan, M. Munir, L. van Elst, A. Dengel, F2DNet: fast focal detection network for pedestrian detection, in: 2022 26th International Conference on Pattern
Recognition (ICPR), 2022, pp. 4658–4664, https://doi.org/10.1109/ICPR56361.2022.9956732.

[36] H. Agarwal, C. Brunner, T. Latka, S. Rudolph, A causal model for physics-conform vehicle trajectories, in: 2023 IEEE 26th International Conference on Intelligent
Transportation Systems (ITSC), 2023, pp. 4980–4987, https://doi.org/10.1109/ITSC57777.2023.10422314.

[37] J. Ouaknine, J. Worrell, Some recent results in metric temporal logic, in: F. Cassez, C. Jard (Eds.), Formal Modeling and Analysis of Timed Systems, Springer,
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 1–13, https://doi.org/10.1007/978-3-540-85778-5_1.

[38] A.M. Rees, The revelance of relevance to the testing and evaluation of document retrieval systems, in: Aslib Proceedings, Vol. 18-11, 1966, pp. 316–324, https://
doi.org/10.1108/eb050068.

[39] G.J. Baumanis, A.M. Rees, D.G. Schultz, A field experimental approach to the study of relevance assessments in relation to document searching final report to
the national science foundation, https://api.semanticscholar.org/CorpusID:61043298, 1967.

[40] T. Saracevic, RELEVANCE: a review of and a framework for the thinking on the notion in information science, J. Am. Soc. Inf. Sci. 26 (1975) 321–343, https://
doi.org/10.1002/asi.4630260604.

[41] L. Schamber, M.B. Eisenberg, M.S. Nilan, A re-examination of relevance: toward a dynamic, situational definition, Inf. Process. Manag. 26 (6) (1990) 755–776,
https://doi.org/10.1016/0306-4573(90)90050-C.

[42] T. Saracevic, Relevance: a review of the literature and a framework for thinking on the notion in information science, J. Am. Soc. Inf. Sci. Technol. 58 (2007)
2126, https://doi.org/10.1002/asi.20681.

[43] P. Ingwersen, K. Järvelin, The Turn: integration of information seeking and retrieval, in: Context, in: The Information Retrieval Series, Springer-Verlag, Berlin,
Heidelberg, 2005, https://doi.org/10.1007/1-4020-3851-8.

[44] P. Wilson, Situational relevance, Inf. Storage Retr. 9 (8) (1973) 457–471, https://doi.org/10.1016/0020-0271(73)90096-X.
[45] M. Czasonis, M. Kritzman, D. Turkington, Relevance-based prediction: a transparent and adaptive alternative to machine learning, J. Finance Data Sci. 5 (12

2022), https://doi.org/10.3905/jfds.2022.1.110.
[46] P. Borchers, T. Koopmann, L. Westhofen, J.S. Becker, L. Putze, D. Grundt, T. de Graaff, V. Kalwa, C. Neurohr, TSC2CARLA: an abstract scenario-based verification

toolchain for automated driving systems, Sci. Comput. Program. 242 (2025) 103256, https://doi.org/10.1016/j.scico.2024.103256.
[47] A. Rakow, A notion of relevance for safety critical autonomous systems, in: M. Fränzle, J. Niehaus, B. Westphal (Eds.), Engineering Safe and Trustworthy Cyber

Physical Systems – Essays Dedicated to Werner Damm on the Occasion of His 71st Birthday, Springer Nature Switzerland AG, 2024, Accepted for publication.
[48] J. Becker, T. Koopmann, B. Neurohr, C. Neurohr, L. Westhofen, B. Wirtz, E. Böde, W. Damm, Simulation of Abstract Scenarios: Towards Automated Tooling in

Criticality Analysis, 2022, pp. 42–51, https://doi.org/10.5281/zenodo.5907154.
[49] Association for Standardization of Automation and Measuring Systems (ASAM), ASAM OpenSCENARIO V1.3, https://www.asam.net/standards/detail/

openscenario-xml/, 2024. (Accessed 13 June 2024).
[50] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: an open urban driving simulator, in: Proceedings of the 1st Annual Conference on Robot

Learning, 2017, pp. 1–16, https://doi.org/10.48550/ARXIV.1711.03938.
[51] Association for Standardization of Automation and Measuring Systems (ASAM), ASAM OpenSCENARIO V2.0, https://www.asam.net/project-detail/asam-

openscenario-v20-1/, 2022. (Accessed 14 May 2024).
[52] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann, Stable-baselines3: reliable reinforcement learning implementations, J. Mach. Learn. Res.

22 (1) (Jan 2021), https://doi.org/10.5555/3546258.3546526.
[53] OpenAI Gymnasium, Framework documentation, https://gymnasium.farama.org/, 2023.
[54] Mario Theers, Mankaran Singh, Kinematic bicycle model, https://thomasfermi.github.io/Algorithms-for-Automated-Driving/Control/BicycleModel.html, 2020.
[55] S. Ding, M. Abdel-Aty, N. Barbour, D. Wang, Z. Wang, O. Zheng, Exploratory analysis of injury severity under different levels of driving automation (sae levels

2 and 4) using multi-source data, Accid. Anal. Prev. 206 (2024) 107692, https://doi.org/10.1016/j.aap.2024.107692.
[56] S. Babisch, C. Neurohr, L. Westhofen, S. Schoenawa, H. Liers, Leveraging the gidas database for the criticality analysis of automated driving systems, J. Adv.

Transp. (May 2023).
[57] Y. Song, M.V. Chitturi, D.A. Noyce, Automated vehicle crash sequences: patterns and potential uses in safety testing, Accid. Anal. Prev. 153 (2021) 106017,

https://doi.org/10.1016/j.aap.2021.106017.
[58] B. Kramer, C. Neurohr, M. Büker, E. Böde, M. Fränzle, W. Damm, Identification and quantification of hazardous scenarios for automated driving, in: Model-Based

Safety and Assessment: 7th International Symposium, IMBSA 2020, Lisbon, Portugal, September 14–16, 2020, Proceedings, Springer-Verlag, Berlin, Heidelberg,
2020, pp. 163–178, https://doi.org/10.1007/978-3-030-58920-2_11.

[59] Q. Xue, X. Ouyang, Y. Zhao, W. Guo, Effect of situation kinematics on drivers’ rear-end collision avoidance behaviour—a combined effect of visual looming,
speed, and distance analysis, Sustainability 14 (22) (2022), https://doi.org/10.3390/su142215103.

[60] J. Li, F. Guo, Y. Zhou, W. Yang, D. Ni, Predicting the severity of traffic accidents on mountain freeways with dynamic traffic and weather data, Transp. Saf.
Environ. 5 (4) (2023) tdad001, https://doi.org/10.1093/tse/tdad001.

[61] N. Angelopoulos, J. Cussens, Bayesian learning of Bayesian networks with informative priors, Ann. Math. Artif. Intell. 54 (2008) 53–98, https://doi.org/10.1007/
s10472-009-9133-x.

[62] F. Lauer, G. Bloch, Incorporating prior knowledge in support vector machines for classification: a review, in: Progress in Modeling, Theory, and Application of
Computational Intelligenc, Neurocomputing 71 (7) (2008) 1578–1594, https://doi.org/10.1016/j.neucom.2007.04.010.

[63] O.L. Mangasarian, E.W. Wild, Nonlinear knowledge-based classification, IEEE Trans. Neural Netw. 19 (10) (2008) 1826–1832, https://doi.org/10.1109/TNN.
2008.2005188.

[64] S. Reich, C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, 2015, https://doi.org/10.1017/CBO9781107706804.
[65] X. Zhang, J. Zhang, K. Sun, X. Yang, C. Dai, Y. Guo, Integrated multi-omics analysis using variational autoencoders: application to pan-cancer classification, in:

2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019, pp. 765–769, https://doi.org/10.1109/BIBM47256.2019.8983228.
[66] S. Dieleman, J.D. Fauw, K. Kavukcuoglu, Exploiting cyclic symmetry in convolutional neural networks, in: M.F. Balcan, K.Q. Weinberger (Eds.), Proceedings

of the 33rd International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 48, PMLR, New York, New York, USA, 2016,
pp. 1889–1898, http://proceedings.mlr.press/v48/dieleman16.pdf, Corpus ID: 8569309.

[67] L. Yang, D. Zhang, G.E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, SIAM J. Sci. Comput. 42 (1) (2020)
A292–A317, https://doi.org/10.1137/18M1225409.

Science of Computer Programming 244 (2025) 103297

31

https://doi.org/10.4204/EPTCS.371.4
https://elib.dlr.de/193009
https://doi.org/10.48550/ARXIV.2305.12203
https://doi.org/10.1109/ICPR56361.2022.9956732
https://doi.org/10.1109/ITSC57777.2023.10422314
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1108/eb050068
https://doi.org/10.1108/eb050068
https://api.semanticscholar.org/CorpusID:61043298
https://doi.org/10.1002/asi.4630260604
https://doi.org/10.1002/asi.4630260604
https://doi.org/10.1016/0306-4573(90)90050-C
https://doi.org/10.1002/asi.20681
https://doi.org/10.1007/1-4020-3851-8
https://doi.org/10.1016/0020-0271(73)90096-X
https://doi.org/10.3905/jfds.2022.1.110
https://doi.org/10.1016/j.scico.2024.103256
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib2A0972B33965F68D8DD775F69D962F0Es1
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib2A0972B33965F68D8DD775F69D962F0Es1
https://doi.org/10.5281/zenodo.5907154
https://www.asam.net/standards/detail/openscenario-xml/
https://www.asam.net/standards/detail/openscenario-xml/
https://doi.org/10.48550/ARXIV.1711.03938
https://www.asam.net/project-detail/asam-openscenario-v20-1/
https://www.asam.net/project-detail/asam-openscenario-v20-1/
https://doi.org/10.5555/3546258.3546526
https://gymnasium.farama.org/
https://thomasfermi.github.io/Algorithms-for-Automated-Driving/Control/BicycleModel.html
https://doi.org/10.1016/j.aap.2024.107692
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib0CC106C80DDB79180A41A041C32C3ACFs1
http://refhub.elsevier.com/S0167-6423(25)00036-X/bib0CC106C80DDB79180A41A041C32C3ACFs1
https://doi.org/10.1016/j.aap.2021.106017
https://doi.org/10.1007/978-3-030-58920-2_11
https://doi.org/10.3390/su142215103
https://doi.org/10.1093/tse/tdad001
https://doi.org/10.1007/s10472-009-9133-x
https://doi.org/10.1007/s10472-009-9133-x
https://doi.org/10.1016/j.neucom.2007.04.010
https://doi.org/10.1109/TNN.2008.2005188
https://doi.org/10.1109/TNN.2008.2005188
https://doi.org/10.1017/CBO9781107706804
https://doi.org/10.1109/BIBM47256.2019.8983228
http://proceedings.mlr.press/v48/dieleman16.pdf
https://doi.org/10.1137/18M1225409

D. Grundt, A. Rakow, P. Borchers et al.

[68] D. Bogdoll, J. Qin, M. Nekolla, A. Abouelazm, T. Joseph, J.M. Zöllner, Informed reinforcement learning for situation-aware traffic rule exceptions, arXiv:
2402.04168 [abs], https://api.semanticscholar.org/CorpusID:267499566, 2024.

[69] J. Collenette, L.A. Dennis, M. Fisher, Advising autonomous cars about the rules of the road, in: M. Luckcuck, M. Farrell (Eds.), Proceedings Fourth International
Workshop on Formal Methods for Autonomous Systems (FMAS) and Fourth International Workshop on Automated and verifiable Software sYstem DEvelopment
(ASYDE), Berlin, Germany, 26th and 27th of September 2022, in: Electronic Proceedings in Theoretical Computer Science, vol. 371, Open Publishing Association,
2022, pp. 62–76, https://doi.org/10.4204/EPTCS.371.5.

[70] G. Mikriukov, G. Schwalbe, C. Hellert, K. Bade, Evaluating the Stability of Semantic Concept Representations in CNNs for Robust Explainability, Springer Nature,
Switzerland, 2023, pp. 499–524, https://doi.org/10.1007/978-3-031-44067-0_26.

[71] M. Gaur, U. Kursuncu, A. Sheth, R. Wickramarachchi, S. Yadav, Knowledge-infused deep learning, in: Proceedings of the 31st ACM Conference on Hypertext and
Social Media, HT ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 309–310, https://doi.org/10.1145/3372923.3404862.

[72] IPG Automotive, IPG CarMaker, https://www.ipg-automotive.com/en/products-solutions/software/carmaker/, last visited: 06/2024.
[73] D.J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A.L. Sangiovanni-Vincentelli, S.A. Seshia, Scenic: a language for scenario specification and scene generation, in:

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, Association for Computing Machinery,
New York, NY, USA, 2019, pp. 63–78, https://doi.org/10.1145/3314221.3314633.

[74] M. Klischat, M. Althoff, Synthesizing traffic scenarios from formal specifications for testing automated vehicles, in: 2020 IEEE Intelligent Vehicles Symposium
(IV), 2020, pp. 2065–2072, https://doi.org/10.1109/IV47402.2020.9304617.

[75] M. Schwammberger, Distributed Controllers for Provably Safe, Live and Fair Autonomous Car Manoeuvres in Urban Traffic, Ph.D. thesis, Oldenburg University,
Germany, 2021, https://oops.uni-oldenburg.de/4961/.

[76] S. Goyal, A. Griggio, J. Kimblad, S. Tonetta, Automatic generation of scenarios for system-level simulation-based verification of autonomous driving systems,
in: M. Farrell, M. Luckcuck, M. Gleirscher, M. Schwammberger (Eds.), Proceedings Fifth International Workshop on Formal Methods for Autonomous Systems,
Leiden, the Netherlands, 15th and 16th of November 2023, in: Electronic Proceedings in Theoretical Computer Science, vol. 395, Open Publishing Association,
2023, pp. 113–129, https://doi.org/10.4204/EPTCS.395.8.

[77] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, F. Diermeyer, Survey on scenario-based safety assessment of automated vehicles, IEEE Access 8 (2020) 87456–87477,
https://doi.org/10.1109/ACCESS.2020.2993730.

[78] A. Donzé, O. Maler, Robust satisfaction of temporal logic over real-valued signals, in: International Conference on Formal Modeling and Analysis of Timed
Systems, Springer, 2010, pp. 92–106, https://doi.org/10.1007/978-3-642-15297-9_9.

[79] A. Donzé, T. Ferrère, O. Maler, Efficient robust monitoring for STL, in: Computer Aided Verification, Springer International Publishing, 2013, pp. 264–279,
https://doi.org/10.1007/978-3-642-39799-8_19.

[80] J.V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, S.A. Seshia, Robust online monitoring of signal temporal logic, Form. Methods Syst. Des. (2017) 5–30,
https://doi.org/10.1007/s10703-017-0286-7.

[81] T. Li, J. Liu, J. Kang, H. Sun, W. Yin, X. Chen, H. Wang, STSL: a novel spatio-temporal specification language for cyber-physical systems, in: 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security (QRS), 2020, pp. 309–319, https://doi.org/10.1109/QRS51102.2020.00048.

[82] I. Haghighi, A. Jones, Z. Kong, E. Bartocci, R. Gros, C. Belta, SpaTeL: a novel spatial-temporal logic and its applications to networked systems, in: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control, HSCC ’15, Association for Computing Machinery, 2015, pp. 189–198, https://
doi.org/10.1145/2728606.2728633.

[83] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, M. Massink, Qualitative and quantitative monitoring of spatio-temporal properties with SSTL, Log. Methods Comput.
Sci. 14 (2017), https://doi.org/10.23638/LMCS-14(4:2)2018.

[84] E. Bartocci, J.V. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković, S. Sankaranarayanan, Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications, in: Lectures on Runtime Verification, 2018, https://doi.org/10.1007/978-3-319-75632-5_5.

[85] E. Zapridou, E. Bartocci, P. Katsaros, Runtime verification of autonomous driving systems in CARLA, in: J. Deshmukh, D. Ničković (Eds.), Runtime Verification,
Springer International Publishing, Cham, 2020, pp. 172–183, https://doi.org/10.1007/978-3-030-60508-7_9.

[86] K. Esterle, L. Gressenbuch, A. Knoll, Modeling and testing multi-agent traffic rules within interactive behavior planning, arXiv:2009.14186, 2020.
[87] P. Zhang, W. Li, D. Wan, L. Grunske, Monitoring of probabilistic timed property sequence charts, Softw. Pract. Exp. 41 (7) (2011) 841–866, https://doi.org/10.

1002/spe.1038.
[88] T. Ferrère, O. Maler, D. Ničković, A. Pnueli, From real-time logic to timed automata, J. ACM 66 (2019), https://doi.org/10.1145/3286976.
[89] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and TLTL, ACM Trans. Softw. Eng. Methodol. 20 (2011), https://doi.org/10.1145/2000799.

2000800.
[90] A. Cimatti, C. Tian, S. Tonetta, Nurv: a nuxmv extension for runtime verification, in: B. Finkbeiner, L. Mariani (Eds.), Runtime Verification, Springer International

Publishing, Cham, 2019, pp. 382–392, https://doi.org/10.1007/978-3-030-32079-9_23.

Science of Computer Programming 244 (2025) 103297

32

https://api.semanticscholar.org/CorpusID:267499566
https://doi.org/10.4204/EPTCS.371.5
https://doi.org/10.1007/978-3-031-44067-0_26
https://doi.org/10.1145/3372923.3404862
https://www.ipg-automotive.com/en/products-solutions/software/carmaker/
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1109/IV47402.2020.9304617
https://oops.uni-oldenburg.de/4961/
https://doi.org/10.4204/EPTCS.395.8
https://doi.org/10.1109/ACCESS.2020.2993730
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1109/QRS51102.2020.00048
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.23638/LMCS-14(4:2)2018
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-030-60508-7_9
http://refhub.elsevier.com/S0167-6423(25)00036-X/bibA066FDD41FF221261D02ED974A438FB9s1
https://doi.org/10.1002/spe.1038
https://doi.org/10.1002/spe.1038
https://doi.org/10.1145/3286976
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-030-32079-9_23

	What does AI need to know to drive: Testing relevance of knowledge
	1 Introduction
	2 Knowledge-infused AI driving functions
	2.1 Development of knowledge infused AI
	2.2 Requirements-driven knowledge-infused AI system development

	3 Preliminaries
	3.1 Artificial Intelligence (AI)
	3.2 Testing
	3.2.1 Formal methods & testing in simulation

	3.3 Knowledge infusion & sets of trajectories

	4 Notion of relevant knowledge for AI driving functions
	4.1 Why do we need a notion of relevance and a relevance test procedure?
	4.2 Dimensions of relevance for AI driving functions
	4.3 Assessment of relevance: testing for relevance indications
	4.3.1 Assessing the doxastic effect of knowledge infusion
	4.3.2 Scenario-relevance indication
	Scenario relevance indications and knowledge bases for ODDs

	5 Systematic derivation of abstract knowledge scenarios
	5.1 Traffic sequence charts
	5.1.1 TSC scenarios & TSC tooling

	5.2 Abstract knowledge scenarios in the test procedure
	5.2.1 Knowledge scenarios and knowledge infusion
	5.2.2 Testing for relevant knowledge

	5.3 Derivation of abstract knowledge scenarios
	5.3.1 Assumptions for the relevance testing procedure
	5.3.2 Abstract knowledge scenarios for testing requirement refinement
	5.3.3 Abstract knowledge scenarios for testing relevant knowledge infusion
	5.3.4 Benefits of abstract knowledge scenarios

	6 Relevance testing procedure
	6.1 Relevant knowledge infusion test procedure
	6.2 Relevant knowledge infusion test

	7 Evaluation and application of relevance testing procedure
	7.1 Safe braking example
	7.1.1 Training specifications
	Observation and action space
	Reward function
	Training setting

	7.1.2 Example 1 - verification of Mi
	7.1.3 Specification of abstract knowledge scenario
	Combination of requirement and knowledge

	7.1.4 Training and verification of Mn
	Example 2 - inadequate knowledge-infused training
	Example 3 - scenario-relevant knowledge-infusion
	Indications for other cases

	7.2 Relevance vs. Statistical correlation
	7.2.1 Dense fog, visibility and braking distance correlation
	7.2.2 Snow, average speed and braking distance correlation

	7.3 Safe turning - environmental knowledge specification
	7.4 Summary

	8 Related work
	8.1 Knowledge-infused AI
	8.2 Scenario specification
	8.3 Scenario-based testing and monitoring

	9 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

