Köglmayr, Daniel und Räth, Christoph (2024) Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning. MECO 49, 2024-04-21 - 2024-04-25, Kranjska Gora, Slovenia.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Model-free and data-driven prediction of tipping point transitions in nonlinear dynamical systems is a challenging and outstanding task in complex systems science. We present a novel, fully data-driven machine learning algorithm (1) based on next-generation reservoir computing (NG-RC) (2) to extrapolate the bifurcation behavior of nonlinear dynamical systems using stationary training data samples. We show that this method can extrapolate tipping point transitions. Furthermore, it is demonstrated that the trained next-generation reservoir computing architecture can be used to predict non-stationary dynamics with time-varying bifurcation parameters. In doing so, post-tipping point dynamics of unseen parameter regions can be simulated.
elib-URL des Eintrags: | https://elib.dlr.de/212758/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Titel: | Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2024 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Machine Learning, Tipping Points, Complex Systems, Reservoir Computing | ||||||||||||
Veranstaltungstitel: | MECO 49 | ||||||||||||
Veranstaltungsort: | Kranjska Gora, Slovenia | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 21 April 2024 | ||||||||||||
Veranstaltungsende: | 25 April 2024 | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||
Standort: | Ulm | ||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||
Hinterlegt von: | Köglmayr, Daniel | ||||||||||||
Hinterlegt am: | 24 Feb 2025 08:55 | ||||||||||||
Letzte Änderung: | 24 Feb 2025 08:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags