Köglmayr, Daniel und Baur, Sebastian und Nakano, Tamon und Fischbach, Fabian und Ducan, Denis und Haluszczynski, Alexander und Klatt, Michael Andreas und Haochun, Ma und Prosperino, Davide und Räth, Christoph (2025) Predicting High-Dimensional Chaotic Time Series by Employing Hybridized Local State Reservoir Computing. Dynamic Days US 2025, 2025-01-03 - 2025-01-05, Denver, USA. (im Druck)
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Reservoir Computing (RC) has been shown to be one of the most promising methods for the prediction of chaotic spatiotemporal systems. Recently it has been demonstrated that by combining knowledge-based models (KBMs) with fully data-driven RC, prediction performance exceeding both methods can be achieved. Additionally, this approach is compatible with a parallel prediction scheme based on local states, making forecasting of high-dimensional chaotic spatiotemporal systems of arbitrarily large extent possible. We demonstrate this using three of the most common RC techniques, namely classical RC, Next Generation RC (NGRC), and Minimal RC (MRC), as well as three hybrid methods: input hybrid (IH), output hybrid (OH), and full hybrid (FH). A find that NGRC and MRC yield equivalent prediction performance with up to two orders of magnitude less computing time and training data than classical RC. Furthermore, our implementation of these techniques in the publicly available software package “SCAN” (Software for Chaos Analysis using Networks) enables the processing of generalized system topologies. We discuss different examples for the prediction of spatially extended systems, whether on a two-dimensional plane or a network (e.g. power grid data), and outline possible applications.
elib-URL des Eintrags: | https://elib.dlr.de/212753/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||||||||||||||
Titel: | Predicting High-Dimensional Chaotic Time Series by Employing Hybridized Local State Reservoir Computing | ||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||
Datum: | 3 Januar 2025 | ||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Status: | im Druck | ||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Machine Learning, Complex Systems, Prediction, Reservoir Computing, Physical-Informed Machine Learning, High dimensional Nonlinear Dynamics | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | Dynamic Days US 2025 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Denver, USA | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 Januar 2025 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 5 Januar 2025 | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - RESIKOAST - Resiliente Versorgungsinfrastruktur und Warenströme im Kontext küstennaher Extremwetterereignisse, R - Impulsprojekt RESIKOAST: Resiliente Versorgungsinfrastruktur und Warenströme im Kontext küstennaher Extremwetterereignisse | ||||||||||||||||||||||||||||||||||||||||||||
Standort: | Ulm | ||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit Institut für Materialphysik im Weltraum | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Köglmayr, Daniel | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 20 Feb 2025 15:05 | ||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 27 Feb 2025 13:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags