Schütte, Nils-Erik und Götting, Niclas und Müntinga, Hauke und List, Meike und Gies, Christopher (2024) Machine Learning on Quantum Systems. DLR Doktorandensymposium, 2024-09-03 - 2024-09-05, Braunschweig, Deutschland.
![]() |
PDF
1MB |
Kurzfassung
Quantum machine learning (QML) has gained significant interest by combining quantum computing and artificial intelligence, two topics that are expected to revolutionize the way of data processing. While gate-based quantum computing uses precisely defined unitary operations on qubits, currently available noisy intermediate-scale quantum (NISQ) devices are not ready for implementations of high-depth circuits. However, machine learning is one of the promising applications to be used on NISQ hardware via parameterized quantum circuits (PQCs). An alternative QML paradigm comes from a different direction: Quantum reservoir computing (QRC) relies on using physical systems as quantum artificial neural networks. Instead of using controlled gate operations, here the system dynamics are controlled by the underlying Hamiltonian, and the machine learning layer is performed at the output weights. Despite their distinct origin, both ML approaches are connected and can formally be mapped onto each other. We discuss this analogy by realizing a transverse-field Ising model on a gate-based quantum computing architecture establishing a fundamental connection on an abstract level between these two very different QML paradigms. This enables us to connect the known expressivity measure of PQC-QML with the quantification of expressiveness of physical dynamical systems.
elib-URL des Eintrags: | https://elib.dlr.de/212501/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Machine Learning on Quantum Systems | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 September 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | machine learning, quantum computing, reservoir computing | ||||||||||||||||||||||||
Veranstaltungstitel: | DLR Doktorandensymposium | ||||||||||||||||||||||||
Veranstaltungsort: | Braunschweig, Deutschland | ||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 September 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 5 September 2024 | ||||||||||||||||||||||||
Veranstalter : | Deutsches Zentrum für Luft- und Raumfahrt e. V. | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Quantencomputing | ||||||||||||||||||||||||
Standort: | Bremen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Satellitengeodäsie und Inertialsensorik > Relativistische Modellierung | ||||||||||||||||||||||||
Hinterlegt von: | Schütte, Nils-Erik | ||||||||||||||||||||||||
Hinterlegt am: | 13 Feb 2025 08:35 | ||||||||||||||||||||||||
Letzte Änderung: | 13 Feb 2025 08:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags