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Machine Learning on Quantum Systems

Why do we want to do quantum machine learning?

Machine learning (ML) enables us to use computer systems for human-like tasks.
Neural networks are inspired by the human brain and consist of neurons that are connected
by edges modelling the synapses of a brain.

Quantum computing describes information processing with a device, whose working
principles are governed by the laws of quantum mechanics.

Quantum systems possess unique properties that scientists try to exploit to gain advantages
and functionalities beyond classical ML:

• feature maps into exponentially large phase spaces

• native processing of quantum input

• non-classical correlations via entanglement

Quantum machine learning (QML) can be viewed as A) implementing algorithms through
quantum gates on quantum computers, or B) using the inherent temporal dynamics of
quantum systems as input-output map.

A) Gate-Based Approach:
Parameterized Quantum Circuits (PQCs)

B) Complex Dynamics Approach:
Quantum Reservoir Computing (QRC)

Classical Computer
• basic unit of information: bit (0 or 1)
• NOT-gate is the only non-trivial single-

bit gate
• AND-gate as example for a two-bit gate

Quantum Computer
• information is stored in quantum bits

(qubits)
• infinite number of single-qubit gates,

which rotate the state on the Bloch
sphere

• arbitrary superpositions
are possible

Parameterized Quantum Circuits (PQCs)
• gates are represented by unitary matrices
• PQCs are realized by making the unitary

matrices dependent on real parameters

Classical Reservoir Computing

• inspired by the human brain

• a reservoir computer is a recurrent neural network with
fixed weights; only the weights of the linear readout
layer are trained with a simple linear regression

• computation may be viewed as any transformation of
an input signal to an output signal arising from the
intrinsic system dynamics

• physical RC: the reservoir is realized by a real physical
system, e.g. an origami-structure [1]

Quantum Reservoir Computing (QRC)
• quantum system is used as reservoir
• example is the transverse-field Ising model

(TFIM):

• dynamics of the system are described by
the unitary time-evolution operator:

• as readout, the expectation values of the
𝜎𝑧 observables are chosen:

• inputs are injected via state initialization:

QML Strategies Side by Side

Understand the working mechanisms of QML
algorithms that rely on either of the two approaches
and compare their capabilities and limitations.

First connection: Embed the TFIM on a gate-based
quantum computing architecture and compare it with
a PQC.

One goal is to quantify and compare the expressivities
of both approaches [2, 3], via calculation of

• eigentasks: set of orthogonal functions which can
be optimally approximated by the system

• resolvable expressive capacity (REC): quantification
of how many linearly independent functions can be
expressed by the system

Conclusion

Implementing the unitary time evolution of a dynamical system on a
gate-based quantum computer allows the direct comparison with a
PQC enabling the study of the expressive power of both approaches in
dependence on the input encoding.

[1] Bhovad et al., Sci Rep 11, 13002 (2021)

A) Gate-based approach:

• potential to be realized on 
currently available noisy
intermediate scale quantum
(NISQ) hardware

• adaptability to specific
problems via quantum circuit
design

• hard and tedious to train

• susceptible to device noise

B) Complex dynamics approach:

• any dynamical quantum
system can be used as
reservoir

• internal dynamics are fixed
and cannot be optimized

• very easy to train

• noise is (to some extent) 
good for the performance

Goal of the Quantum Fellowship Project

Why does it work - an example:
• use a single qubit PQC to fit a noisy

sine curve
• inputs:
• parameter:
• the measured expectation value is given

analytically by

Workflow:
1. use unitary gates 𝑆(𝑥) to embed data into

the quantum system
2. use a block of parameterized gates 𝑈(𝜃) (called ansatz) as trainable part of

the circuit
3. perform measurement on the system
4. use an optimizer on a classical computer to update the parameters

[2] Schuld et al., Phys. Rev. A 103, 032430 (2021)
[3] Hu et al., Phys. Rev. X 13, 041020 (2023)


