Juergens, Mira und Meinert, Nis und Bengs, Viktor und Hüllermeier, Eyke und Waegeman, Willem (2024) Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? PMLR. Proceedings of the 41st International Conference on Machine Learning, 2024-07-21 - 2024-07-27, Vienna, Austria.
![]() |
PDF
8MB |
Offizielle URL: https://proceedings.mlr.press/v235/juergens24a.html
Kurzfassung
ATrustworthy ML systems should not only return accurate predictions, but also a reliable representation of their uncertainty. Bayesian methods are commonly used to quantify both aleatoric and epistemic uncertainty, but alternative approaches, such as evidential deep learning methods, have become popular in recent years. The latter group of methods in essence extends empirical risk minimization (ERM) for predicting second-order probability distributions over outcomes, from which measures of epistemic (and aleatoric) uncertainty can be extracted. This paper presents novel theoretical insights of evidential deep learning, highlighting the difficulties in optimizing second-order loss functions and interpreting the resulting epistemic uncertainty measures. With a systematic setup that covers a wide range of approaches for classification, regression and counts, it provides novel insights into issues of identifiability and convergence in second-order loss minimization, and the relative (rather than absolute) nature of epistemic uncertainty measures.
elib-URL des Eintrags: | https://elib.dlr.de/212490/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 235 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 22624-22642 | ||||||||||||||||||||||||
Verlag: | PMLR | ||||||||||||||||||||||||
Name der Reihe: | Proceedings of Machine Learning Research | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Artificial Intelligence, Machine Learning, Uncertainty Estimation, Evidential Deep Learning | ||||||||||||||||||||||||
Veranstaltungstitel: | Proceedings of the 41st International Conference on Machine Learning | ||||||||||||||||||||||||
Veranstaltungsort: | Vienna, Austria | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 21 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 27 Juli 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FuturePorts | ||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||||||||||||||
Hinterlegt von: | Meinert, Nis | ||||||||||||||||||||||||
Hinterlegt am: | 05 Feb 2025 10:17 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Feb 2025 10:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags