elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders

Gao, Lianru und Zhu, Han und Hong, Danfeng und Zhang, Bing und Chanussot, Jocelyn (2022) CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders. IEEE Transactions on Geoscience and Remote Sensing, 60, 5503914_1-5503914_14. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3064958. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/9383423

Kurzfassung

In recent years, deep learning (DL) has attracted increasing attention in hyperspectral unmixing (HU) applications due to its powerful learning and data fitting ability. The autoencoder (AE) framework, as an unmixing baseline network, achieves good performance in HU by automatically learning low-dimensional embeddings and reconstructing data. Nevertheless, the conventional AE-based architecture, which focuses more on the pixel-level reconstruction loss, tends to lose some significant detailed information of certain materials (e.g., material-related properties) in the reconstruction process. Therefore, inspired by the perception mechanism, we propose a cycle-consistency unmixing network, called CyCU-Net, by learning two cascaded AEs in an end-to-end fashion, to enhance the unmixing performance more effectively. CyCU-Net is capable of reducing the detailed and material-related information loss in the process of reconstruction by relaxing the original pixel-level reconstruction assumption to cycle consistency dominated by the cascaded AEs. More specifically, cycle consistency can be achieved by a newly proposed self-perception loss, which consists of two spectral reconstruction terms and one abundance reconstruction term. By taking advantage of the self-perception loss in the network, the high-level semantic information can be well preserved in the unmixing process. Moreover, we investigate the performance gain of CyCU-Net with extensive ablation studies. Experimental results on one synthetic and three real hyperspectral data sets demonstrate the effectiveness and competitiveness of the proposed CyCU-Net in comparison with several state-of-the-art unmixing algorithms.

elib-URL des Eintrags:https://elib.dlr.de/212187/
Dokumentart:Zeitschriftenbeitrag
Titel:CyCU-Net: Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gao, LianruChinese Academy of SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, HanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hong, DanfengDanfeng.Hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhang, BingChinese Academy of Scienceshttps://orcid.org/0000-0001-7311-9844NICHT SPEZIFIZIERT
Chanussot, Jocelynjocelyn (at) hi.ishttps://orcid.org/0000-0003-4817-2875NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2021.3064958
Seitenbereich:5503914_1-5503914_14
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Cascaded autoencoders (AEs), cycle consistency, deep learning (DL), hyperspectral unmixing (HU), remote sensing (RS), self-perception
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:24 Jan 2025 08:01
Letzte Änderung:24 Jan 2025 08:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.