elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Forest Disturbance Detection via Self-Supervised and Transfer Learning With Sentinel-1&2 Images

Kuzu, Ridvan Salih und Antropov, Oleg und Molinier, Matthieu und Dumitru, Corneliu Octavian und Saha, Sudipan und Zhu, Xiao Xiang (2024) Forest Disturbance Detection via Self-Supervised and Transfer Learning With Sentinel-1&2 Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, Seiten 4751-4767. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2024.3361183. ISSN 1939-1404.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://dx.doi.org/10.1109/JSTARS.2024.3361183

Kurzfassung

In this study, we examine the potential of leveraging self-supervised learning (SSL) and transfer learning methodologies for forest disturbance mapping using Earth Observation (EO) data. Our focus is on natural disturbances caused by windthrow and snowload damages. Particularly, we investigate the potential of knowledge-distillation-based contrastive learning approaches to obtain comprehensive representations of forest structure changes using Copernicus Sentinel-1 and Sentinel-2 satellite imagery. Leveraging pretrained backbone models from knowledge distillation, we employ transfer learning based on deep change vector analysis to delineate forest changes. We demonstrate developed approaches on two use cases, namely, mapping windthown forest using bitemporal Sentinel-1 and Sentinel-2 images, and mapping forest areas damaged by excessive snowload using bitemporal Sentinel-1 images. Developed self-supervised models were compared in a benchmarking exercise. The best results were provided by pixel-level contrastive learning for Sentinel-1-based snowload damage mapping with an overall accuracy of 84% and an F1 score of 0.567, and for Sentinel-2-based forest windthrow mapping with an overall accuracy of 76.5% and an F1 score of 0.692. We expect that developed methodologies can be useful for mapping also other types of forest disturbances using Copernicus Sentinel images or similar EO data. Our findings underscore the potential of SSL and transfer learning for enhancing forest disturbance detection using EO.

elib-URL des Eintrags:https://elib.dlr.de/212166/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:This work was supported in part by the European Space Agency (ESA) through the RepreSent project under Grant 4000137253/22/I-DT, in part by the ESA Network of Resources Initiative with remote sensing data sponsorship under Grant 1B228D, and in part by the Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI under Grant ZT-I-PF-5-01 and on the HAICORE@FZJ partition.
Titel:Forest Disturbance Detection via Self-Supervised and Transfer Learning With Sentinel-1&2 Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kuzu, Ridvan SalihRidvan.Kuzu (at) dlr.dehttps://orcid.org/0000-0002-1816-181X176455731
Antropov, OlegAalto UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Molinier, Matthieumatthieu.molinier (at) vtt.fiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dumitru, Corneliu OctavianCorneliu.Dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Saha, SudipanTU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao XiangTechnical University of Munich / Munich Center for Machine Learning, 80333, Munich, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.1109/JSTARS.2024.3361183
Seitenbereich:Seiten 4751-4767
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Forestry, Self-supervised learning, Transfer learning, Biological system modeling, Satellite constellations, Remote sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Innovative Fernerkundungsverfahren, R - Künstliche Intelligenz, R - Optische Fernerkundung, R - AI4SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Kuzu, Dr. Ridvan Salih
Hinterlegt am:23 Jan 2025 10:36
Letzte Änderung:17 Feb 2025 11:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.