Song, Qian und Kuzu, Ridvan Salih und Zhu, Xiao Xiang (2024) Dominant Leaf Type Classification Using Sentinel-1 Time Series. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4482-4485. IEEE. IGARSS 2024, 2024-07-08 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10641307. ISBN 979-8-3503-6032-5. ISSN 2153-7003.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://dx.doi.org/10.1109/IGARSS53475.2024.10641307
Kurzfassung
The classification of dominant leaf types, which distinguishes forests based on their leaf conditions, is beneficial for forest management and policymakers. This paper proposes a model based on U-Net to classify the land into non-tree areas, broadleaf forests, and coniferous forests. The dual-pol Sentinel-1 data from January, May, August, and October of 2018 were stacked as a time series. Due to the class imbalance issue, where the non-tree area category dominates (52.69%) the dataset, the model tends to be biased. Thus, re-weighting is introduced to balance the loss. We tested and compared two types of methods: class-aware and task-aware re-weighting. The results indicate that re-weighting effectively mitigates the class imbalance issue.
| elib-URL des Eintrags: | https://elib.dlr.de/212164/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Dominant Leaf Type Classification Using Sentinel-1 Time Series | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 5 September 2024 | ||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/IGARSS53475.2024.10641307 | ||||||||||||||||
| Seitenbereich: | Seiten 4482-4485 | ||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||
| ISSN: | 2153-7003 | ||||||||||||||||
| ISBN: | 979-8-3503-6032-5 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Forests, Accuracy, Time series analysis, Sentinel-1, Geoscience and remote sensing, Sensors, Task analysis | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2024 | ||||||||||||||||
| Veranstaltungsort: | Athens, Greece | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 8 Juli 2024 | ||||||||||||||||
| Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Innovative Fernerkundungsverfahren, R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||
| Hinterlegt am: | 23 Jan 2025 10:41 | ||||||||||||||||
| Letzte Änderung: | 23 Jan 2025 10:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags