Albrecht, Conrad M (2025) Beyond the Random Forest: How Deep Learning for Remote Sensing Monitors Trees. Columbia U symposium "AI & Global Change Research", 2025-02-18, New York City, USA.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Data to track our planet's health has increased to hundreds of petabytes in volume through the ever increasing number and ever decreasing costs to deploy drones and satellites. National programs by USGS, USDA, NASA, ESA, and the European Commission make freely available multi- and hyperspectral imagery. However, intelligent manual inspection of these geospatial data and maps by human eye is impossible. Recent advances in deep neural networks dramatically boosted the accuracy and diversity of computer vision applications to the point that those achievements become practical tools at our fingertip. My presentation invites you onto a journey of my research exploring deep learning for aerial photos and laser scans in order to generate an inventory of urban forests in New York City [1], discover ancient agriculture in the Negev desert of Israel [2], and an attempt to estimate global biomass [3]. I hope to spark fruitful discussions with peers from ecology on how to utilize AI for environmental good to protect and treasure our green spaces. [1] https://elib.dlr.de/187233 [2] https://elib.dlr.de/190710 [3] https://elib.dlr.de/191502
elib-URL des Eintrags: | https://elib.dlr.de/212150/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Beyond the Random Forest: How Deep Learning for Remote Sensing Monitors Trees | ||||||||
Autoren: |
| ||||||||
Datum: | 2025 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | akzeptierter Beitrag | ||||||||
Stichwörter: | urban forests, global biomass mapping, climate resilience, deep learning, LiDAR, multi- & hyperspectral satellite imagery | ||||||||
Veranstaltungstitel: | Columbia U symposium "AI & Global Change Research" | ||||||||
Veranstaltungsort: | New York City, USA | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsdatum: | 18 Februar 2025 | ||||||||
Veranstalter : | Department of Ecology, Evolution and Environmental Biology | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||
Hinterlegt am: | 28 Jan 2025 11:10 | ||||||||
Letzte Änderung: | 28 Jan 2025 11:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags