Wang, Yi und Albrecht, Conrad M und Zhu, Xiao Xiang (2024) Multi-Label Guided Supervised Contrastive Learning for Earth Observation Pretraining. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 7568-7571. 2024 IGARSS, 2024-07-07 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10642289.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10642289
Kurzfassung
Pretraining foundation models on large-scale satellite imagery has raised great interest in Earth observation. While most pretraining is conducted purely self-supervised, many land cover land use products that provide free and global annotations tend to be overlooked. To bridge this gap, we propose to exploit land-cover-generated multi-label annotations to guide supervised contrastive learning for Earth observation. We match the SSL4EO-S12 dataset with Dynamic World land cover maps and integrate image-level multi-label annotations. During pretraining, the label similarities between different images are calculated, and those with high similarity scores are pulled together in the embedding space. Experimental results on classification and segmentation downstream tasks demonstrate the effectiveness of the proposed method.
elib-URL des Eintrags: | https://elib.dlr.de/212149/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Multi-Label Guided Supervised Contrastive Learning for Earth Observation Pretraining | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2024 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10642289 | ||||||||||||||||
Seitenbereich: | Seiten 7568-7571 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Self-supervised learning, pretraining, foundation models, Earth observation, remote sensing | ||||||||||||||||
Veranstaltungstitel: | 2024 IGARSS | ||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||
Hinterlegt am: | 22 Jan 2025 15:23 | ||||||||||||||||
Letzte Änderung: | 22 Jan 2025 15:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags