elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Modeling a Tactile Skin for Learning Fine Manipulation with a Robotic Hand

Kasolowsky, Ulf (2024) Modeling a Tactile Skin for Learning Fine Manipulation with a Robotic Hand. Masterarbeit, Technical University of Munich.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The dextrous manipulation of small objects is a key skill required for all kinds of industrial tasks like sorting or assembling. Humans excel in fine manipulation using their dextrous hands in combination with their spatially resolved sense of touch. In robotics, only recently, the advent of modern learning methods based on excessive training in simulation enabled breakthroughs in dextrous manipulation with multi-fingered hands, e.g., in-hand manipulation. However, for learning fine manipulation tasks, in addition a precise but computationally efficient simulation of tactile sensors is needed. Here, we present a novel model of a tactile skin that can be used together with rigid-body (hence fast) physics simulators. Tactile skins are especially attractive as they can be easily applied on the robot structure in contrast to the more commonly used bulky camera-based sensors. The model considers the softness of the real fingertips such that a contact can spread across multiple taxels of the sensor depending on the contact geometry. We calibrate the model parameters to allow an accurate simulation of the real-world sensor. For this, we present a self-contained calibration method that relies solely on the proprioceptive sensors of the fingers. A cap with a spherical indenter is attached to one finger, which presses on the sensor attached to another finger. To demonstrate the validity of our approach, we learn two challenging fine manipulation tasks in simulation: Rolling a marble and a bolt between two fingers. We show that, especially for the marble, tactile feedback is crucial for precise manipulation. Moreover, we demonstrate that all policies can be successfully transferred from the simulation to the real robotic hand.

elib-URL des Eintrags:https://elib.dlr.de/212138/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Modeling a Tactile Skin for Learning Fine Manipulation with a Robotic Hand
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kasolowsky, Ulfulf.kasolowsky (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2024
Open Access:Nein
Status:veröffentlicht
Stichwörter:Deep Reinforcement Learning, Tactile Skin, Robotic Hand, Fine Manipulation
Institution:Technical University of Munich
Abteilung:TUM School of Engineering and Design
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Autonome, lernende Roboter [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Kasolowsky, Ulf
Hinterlegt am:13 Jan 2026 15:31
Letzte Änderung:13 Jan 2026 15:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.