elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Characterization of 4D Forest Structure by Integrating LiDAR and InSAR Measurements

Romero-Puig, Noelia und Pardini, Matteo und Albrecht, Lea Maria und Guliaev, Roman und Papathanassiou, Konstantinos (2015) Characterization of 4D Forest Structure by Integrating LiDAR and InSAR Measurements. BioSpace25, 2025-02-10 - 2025-02-14, Frascati, Italy.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Forest structure is the result of forest dynamics and biophysical processes that affect their function and diversity. It can be understood as the arrangement of trees and their components in space, but also as the 3D distribution of biomass [1]. The challenge remains in the definition of 3D forest structure optimized for remote sensing measurements. In this sense, this contribution aims at establishing a framework for the joint exploitation of two remote sensing techniques known for their sensitivity to 3D forest structure and dynamics: LiDAR and SAR data. LiDAR sensors provide high resolution but discrete measurements of vegetation reflectance profiles (i.e. waveforms) acquired in a nadir-looking geometry. SAR systems, however, provide lower (though still high) resolution, continuous measurements in a side-looking geometry that allows large-scale coverage and short revisit times. They measure interferometric coherences (InSAR) and radar reflectivity profiles (TomoSAR) related to the physical vegetation structure. The combination of LiDAR and SAR data requires a physical or statistical link between them at different scales and spatial resolutions [2]. Here, different applications and methods aiming at characterizing forest structure at different scales by exploiting the synergies and complementarities of these two types of information are presented and discussed. The need for spatial correlation between vertical reflectivity profiles becomes crucial to capture structural heterogeneity present in disturbed forests. Natural growth versus logging or fire forest scenarios can be simulated with prognostic ecosystem models, e.g. FORMIND [3], and evaluated through multi-scale analysis e.g. by using a wavelet frame [4] with X-band InSAR data. The sensitivity of both LiDAR and SAR data to forest structure has also been proven by using structural horizontal and vertical indices derived from correlating vertical reflectivity profiles [5]. Using LiDAR GEDI waveforms in combination with TanDEM-X interferometric coherence allows enhanced large-scale forest height estimation [6], which can be then used to analyze relative height changes of different temporal periods. At last, GEDI waveforms have proven suitable for the generation of a basis representative of forest structure information that allows the reconstruction of X-band reflectivity profiles [7]. [1] T. A. Spies, P. A. Stine, R. A. Gravenmier, J. W. Long, M. J. Reilly, “Synthesis of science to inform land management within the Northwest Forest Plan area,” Gen. Tech. Rep. PNW-GTR-966, Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 1020, p. 3 vol., 2018, DOI: 10.2737/PNW-GTR-966. [2] M. Pardini, J. Armston, W. Qi, S. K. Lee, M. Tello, V. Cazcarra-Bes, C. Choi, K. P. Papathanassiou, R. O. Dubayah, L. E. Fatoyinbo, “Early Lessons on Combining Lidar and Multi-baseline SAR Measurements for Forest Structure Characterization”, Surveys in Geophysics, vol. 40, no. 4, pp. 803–837, 2019, DOI: 10.1007/S10712-019-09553-9/TABLES/2. [3] R. Fischer, F. Bohn, M. Dantas de Paula, C. Dislich, J. Groeneveld, A. G. Gutiérrez, M. Kazmierczak, N. Knapp, S. Lehmann, S. Paulick, S. Pütz, E. Rödig, F. Taubert, P. Köhler, A. Huth, “Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests”, Ecological Modelling, vol. 326, pp. 124–133, 2016, DOI: 10.1016/j.ecolmodel.2015.11.018. [4] L. Albrecht, A. Huth, R. Fischer, K. Papathanassiou, O. Antropov and L. Lehnert, “Estimating forest structure change by means of wavelet statistics using TanDEM-X datasets”, in Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, pp. 658-662, VDE, April 2024, Munich, Germany. [5] M. Tello, V. Cazcarra-Bes, M. Pardini and K. Papathanassiou, “Forest Structure Characterization from SAR Tomography at L-Band,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 10, pp. 3402-3414, Oct. 2018, DOI: 10.1109/JSTARS.2018.2859050. [6] C. Choi, M. Pardini, J. Armston, K. Papathanassiou, “Forest Biomass Mapping Using Continuous InSAR and Discrete Waveform Lidar Measurements: A TanDEM-X / GEDI Test Study”, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 7675-7689, 2023, DOI: 10.1109/JSTARS.2023.3302026. [7] R. Guliaev, M. Pardini, K. Papathanassiou, “Forest 3D Radar Reflectivity Reconstruction at X-Band Using a Lidar Derived Polarimetric Coherence Tomography Basis”, Remote Sensing, vol. 16, no. 2146, 2024, DOI: 10.3390/rs16122146.

elib-URL des Eintrags:https://elib.dlr.de/212108/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Characterization of 4D Forest Structure by Integrating LiDAR and InSAR Measurements
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Romero-Puig, NoeliaGerman Aerospace Center (DLR)https://orcid.org/0000-0002-7661-7563NICHT SPEZIFIZIERT
Pardini, MatteoMatteo.Pardini (at) dlr.dehttps://orcid.org/0000-0003-2018-7514NICHT SPEZIFIZIERT
Albrecht, Lea MariaLea.Albrecht (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Guliaev, RomanRoman.Guliaev (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Papathanassiou, KonstantinosKostas.Papathanassiou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Februar 2015
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:Forest, disturbances, InSAR, LiDAR, structure, TomoSAR
Veranstaltungstitel:BioSpace25
Veranstaltungsort:Frascati, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:10 Februar 2025
Veranstaltungsende:14 Februar 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Polarimetrische SAR-Interferometrie HR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte
Hinterlegt von: Romero Puig, Noelia
Hinterlegt am:16 Jun 2025 11:28
Letzte Änderung:16 Jun 2025 11:28

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.