elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards a Hybrid Digital Twin: Fusing Sensor Information and Physics in Surrogate Modeling of a Reinforced Concrete Beam

Sahin, Tarik und Wolff, Daniel und von Danwitz, Max und Popp, Alexander (2024) Towards a Hybrid Digital Twin: Fusing Sensor Information and Physics in Surrogate Modeling of a Reinforced Concrete Beam. In: 2024 Sensor Data Fusion: Trends, Solutions, Applications (SDF). Institute of Electrical and Electronics Engineers. 2024 Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2024-11-25 - 2024-11-27, Bonn, Deutschland. doi: 10.1109/SDF63218.2024.10773885. ISBN 979-8-3315-2744-0. ISSN 2473-7666.

[img] PDF - Nur DLR-intern zugänglich
4MB

Offizielle URL: https://ieeexplore.ieee.org/document/10773885

Kurzfassung

In this study, we investigate the potential of fast-to-evaluate surrogate modeling techniques that fuse the sensor data with non-sensor information, i.e. underlying physics, for developing a hybrid digital twin of a steel-reinforced concrete beam, serving as a representative example of a civil engineering structure such as a bridge. Bridges are critical infrastructures that require continuous monitoring and maintenance with predictive power to ensure their safety and longevity. Therefore, there is a high demand for surrogate models that combine sensor data with physics to construct explainable predictive surrogates. As surrogates, two distinct models are developed utilizing physics-informed neural networks (PINNs), which integrate sensor data with non-sensor context knowledge, i.e. given governing laws of physics by spatio-temporal data integration. The sensor data is obtained from a previously conducted four-point bending test. The first surrogate model focuses on temporal phenomena and predicts strains at fixed locations along the center line of the beam for various time instances. Here, we compare the physics-based approach with a purely data-driven method, revealing the significance of physical laws for the extrapolation capabilities of models in scenarios with limited access to experimental data. Furthermore, we identify the natural frequency of the system by utilizing the physics-based model as an inverse solver. For the second surrogate model, we then focus on spatial phenomena at a fixed instance in time and combine the sensor data with the equations of linear elasticity to predict the strain distribution within the beam. This example shows how the integration of data can improve the insufficiently accurate predictions of a simplified physical model, given suitable loss weights.

elib-URL des Eintrags:https://elib.dlr.de/211845/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards a Hybrid Digital Twin: Fusing Sensor Information and Physics in Surrogate Modeling of a Reinforced Concrete Beam
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sahin, Tariktarik.sahin (at) unibw.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wolff, Danield.wollf (at) unibw.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
von Danwitz, Maxmax.vondanwitz (at) dlr.dehttps://orcid.org/0000-0002-2814-0027175685852
Popp, Alexanderalexander.popp (at) dlr.dehttps://orcid.org/0000-0002-8820-466X175685855
Datum:2024
Erschienen in:2024 Sensor Data Fusion: Trends, Solutions, Applications (SDF)
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/SDF63218.2024.10773885
Verlag:Institute of Electrical and Electronics Engineers
ISSN:2473-7666
ISBN:979-8-3315-2744-0
Status:veröffentlicht
Stichwörter:surrogate modeling, physics-informed neural networks, sensor data and fusion, hybrid digital twins
Veranstaltungstitel:2024 Sensor Data Fusion: Trends, Solutions, Applications (SDF)
Veranstaltungsort:Bonn, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 November 2024
Veranstaltungsende:27 November 2024
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen > Simulationsmethoden für Digitale Zwillinge
Institut für den Schutz terrestrischer Infrastrukturen
Hinterlegt von: von Danwitz, Max
Hinterlegt am:14 Jan 2025 14:49
Letzte Änderung:14 Jan 2025 14:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.