Sliwowski, Daniel und Lee, Dongheui (2024) ConditionNET: Learning Preconditions and Effects for Execution Monitoring. IEEE Robotics and Automation Letters, 10 (2), Seiten 1337-1344. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2024.3520916. ISSN 2377-3766.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10812068
Kurzfassung
The introduction of robots into everyday scenarios necessitates algorithms capable of monitoring the execution of tasks. In this letter, we propose ConditionNET, an approach for learning the preconditions and effects of actions in a fully data-driven manner. We develop an efficient vision-language model and introduce additional optimization objectives during training to optimize for consistent feature representations. ConditionNET explicitly models the dependencies between actions, preconditions, and effects, leading to improved performance. We evaluate our model on two robotic datasets, one of which we collected for this letter, containing 406 successful and 138 failed teleoperated demonstrations of a Franka Emika Panda robot performing tasks like pouring and cleaning the counter. We show in our experiments that ConditionNET outperforms all baselines on both anomaly detection and phase prediction tasks. Furthermore, we implement an action monitoring system on a real robot to demonstrate the practical applicability of the learned preconditions and effects. Our results highlight the potential of ConditionNET for enhancing the reliability and adaptability of robots in real-world environments.
elib-URL des Eintrags: | https://elib.dlr.de/211805/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | ConditionNET: Learning Preconditions and Effects for Execution Monitoring | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 23 Dezember 2024 | ||||||||||||
Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 10 | ||||||||||||
DOI: | 10.1109/LRA.2024.3520916 | ||||||||||||
Seitenbereich: | Seiten 1337-1344 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2377-3766 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Execution Monitoring | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Basistechnologien [RO] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||
Hinterlegt von: | Strobl, Dr.-Ing. Klaus H. | ||||||||||||
Hinterlegt am: | 14 Jan 2025 14:48 | ||||||||||||
Letzte Änderung: | 14 Jan 2025 14:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags