Valls Mascaró, Esteve und Lee, Dongheui (2024) Know your limits! Optimize the robot's behavior through self-awareness. In: 23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024, Seiten 258-265. IEEE. 2024 IEEE-RAS International Conference on Humanoid Robots, 2024-11-22, Nancy, France. doi: 10.1109/Humanoids58906.2024.10769929. ISBN 979-8-3503-7357-8. ISSN 2164-0572.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10769929
Kurzfassung
As humanoid robots transition from labs to realworld environments, it is essential to democratize robot control for non-expert users. Recent human-robot imitation algorithms focus on following a reference human motion with high precision, but they are susceptible to the quality of the reference motion and require the human operator to simplify its movements to match the robot's capabilities. Instead, we consider that the robot should understand and adapt the reference motion to its own abilities, facilitating the operator's task. For that, we introduce a deep-learning model that anticipates the robot's performance when imitating a given reference. Then, our system can generate multiple references given a highlevel task command, assign a score to each of them, and select the best reference to achieve the desired robot behavior. Our Self-AWare model (SAW) ranks potential robot behaviors based on various criteria, such as fall likelihood, adherence to the reference motion, and smoothness. We integrate advanced motion generation, robot control, and SAW in one unique system, ensuring optimal robot behavior for any task command. For instance, SAW can anticipate falls with 99.29% accuracy.
elib-URL des Eintrags: | https://elib.dlr.de/211800/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Know your limits! Optimize the robot's behavior through self-awareness | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 3 Dezember 2024 | ||||||||||||
Erschienen in: | 23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/Humanoids58906.2024.10769929 | ||||||||||||
Seitenbereich: | Seiten 258-265 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 2164-0572 | ||||||||||||
ISBN: | 979-8-3503-7357-8 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | self-aware robots | ||||||||||||
Veranstaltungstitel: | 2024 IEEE-RAS International Conference on Humanoid Robots | ||||||||||||
Veranstaltungsort: | Nancy, France | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsdatum: | 22 November 2024 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Basistechnologien [RO] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||
Hinterlegt von: | Strobl, Dr.-Ing. Klaus H. | ||||||||||||
Hinterlegt am: | 14 Jan 2025 14:47 | ||||||||||||
Letzte Änderung: | 14 Jan 2025 14:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags