Forsthofer, Nicolai und Kunc, Oliver (2025) Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents. In: AIAA SciTech 2025 Forum. AIAA SciTech 2025 Forum, 2025-01-06 - 2025-01-10, Orlando, USA. doi: 10.2514/6.2025-1791. ISBN 978-162410723-8.
Dies ist die aktuellste Version dieses Eintrags.
|
PDF
2MB |
Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2025-1791
Kurzfassung
Workflow engines play an important role for modern engineering, especially when the complexity of the subject is high. Large Language Models could potentially provide a powerful user interface, if they can be set up to reliably transform natural language inputs into correct workflow instructions. Previous works investigated this possibility with a single proprietary Large Language Model as the only involved AI system. The accompanying part A of the current work enhances that method by implementing a multi-agent architecture of proprietary models and Open Weight Models resulting in reduced context window sizes, and by also incorporating a data provenance system. The present part B addresses the real-world problem of ambiguity of workflows and how to solve this problem in a scalable manner. The main contributions are twofold. First, the non-uniqueness of results of queries to knowledge graphs of realistic workflows for computational engineering is classified as either "by multi-fidelity" or "by redundancy". Second, it is shown that LLMs with large context window can be capable of resolving such non-uniqueness whereas fine-tuned Small Language Models contribute in other ways to the scalability of the multi-agent system of part A.
| elib-URL des Eintrags: | https://elib.dlr.de/211629/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 3 Januar 2025 | ||||||||||||
| Erschienen in: | AIAA SciTech 2025 Forum | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.2514/6.2025-1791 | ||||||||||||
| ISBN: | 978-162410723-8 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Artificial Intelligence, Large-Language Model, Workflow, Retrieval Augmented Generation, Knowledge Graph, Fine-Tuning | ||||||||||||
| Veranstaltungstitel: | AIAA SciTech 2025 Forum | ||||||||||||
| Veranstaltungsort: | Orlando, USA | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 6 Januar 2025 | ||||||||||||
| Veranstaltungsende: | 10 Januar 2025 | ||||||||||||
| Veranstalter : | AIAA | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||
| HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
| DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||
| Standort: | Stuttgart | ||||||||||||
| Institute & Einrichtungen: | Institut für Bauweisen und Strukturtechnologie > Bauteilgestaltung und Fertigungstechnologien | ||||||||||||
| Hinterlegt von: | Kunc, Oliver | ||||||||||||
| Hinterlegt am: | 09 Jan 2025 16:12 | ||||||||||||
| Letzte Änderung: | 27 Feb 2025 09:56 |
Verfügbare Versionen dieses Eintrags
- Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents. (deposited 09 Jan 2025 16:12) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags