elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents

Forsthofer, Nicolai und Kunc, Oliver (2025) Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents. In: AIAA SciTech 2025 Forum. AIAA SciTech 2025 Forum, 2025-01-06 - 2025-01-10, Orlando, USA. doi: 10.2514/6.2025-1791. ISBN 978-162410723-8.

Dies ist die aktuellste Version dieses Eintrags.

[img] PDF
2MB

Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2025-1791

Kurzfassung

Workflow engines play an important role for modern engineering, especially when the complexity of the subject is high. Large Language Models could potentially provide a powerful user interface, if they can be set up to reliably transform natural language inputs into correct workflow instructions. Previous works investigated this possibility with a single proprietary Large Language Model as the only involved AI system. The accompanying part A of the current work enhances that method by implementing a multi-agent architecture of proprietary models and Open Weight Models resulting in reduced context window sizes, and by also incorporating a data provenance system. The present part B addresses the real-world problem of ambiguity of workflows and how to solve this problem in a scalable manner. The main contributions are twofold. First, the non-uniqueness of results of queries to knowledge graphs of realistic workflows for computational engineering is classified as either "by multi-fidelity" or "by redundancy". Second, it is shown that LLMs with large context window can be capable of resolving such non-uniqueness whereas fine-tuned Small Language Models contribute in other ways to the scalability of the multi-agent system of part A.

elib-URL des Eintrags:https://elib.dlr.de/211629/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Forsthofer, NicolaiNicolai.Forsthofer (at) dlr.dehttps://orcid.org/0009-0007-0230-2079175355581
Kunc, OliverOliver.Kunc (at) dlr.dehttps://orcid.org/0000-0001-8437-9721175355582
Datum:3 Januar 2025
Erschienen in:AIAA SciTech 2025 Forum
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2025-1791
ISBN:978-162410723-8
Status:veröffentlicht
Stichwörter:Artificial Intelligence, Large-Language Model, Workflow, Retrieval Augmented Generation, Knowledge Graph, Fine-Tuning
Veranstaltungstitel:AIAA SciTech 2025 Forum
Veranstaltungsort:Orlando, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 Januar 2025
Veranstaltungsende:10 Januar 2025
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Triebwerk
Standort: Stuttgart
Institute & Einrichtungen:Institut für Bauweisen und Strukturtechnologie > Bauteilgestaltung und Fertigungstechnologien
Hinterlegt von: Kunc, Oliver
Hinterlegt am:09 Jan 2025 16:12
Letzte Änderung:27 Feb 2025 09:56

Verfügbare Versionen dieses Eintrags

  • Evolving AI-Driven Workflow Management, Part B: Non-Unique Engineering Workflows and Scalable Open-weight Agents. (deposited 09 Jan 2025 16:12) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.