Haertel, Christian und Staegemann, Daniel und Pohl, Matthias und Daase, Christian und Turowski, Klaus und Dreschel, Dirk (2024) Toward Improved Knowledge Retention: A Template for Describing Data Science Projects. IEEE. 2024 IEEE International Conference on Big Data (Big Data), 2024-12-15 - 2024-12-18, Washington D.C., USA. (im Druck)
PDF
- Nur DLR-intern zugänglich
678kB |
Kurzfassung
Data Science (DS) aims to extract knowledge from large amounts of data. Organizations can use the retrieved insights to achieve various performance improvements. However, DS projects often fail to fulfill their objectives due to the explorative nature of this discipline and technical as well as managerial challenges. Consequently, new approaches to support DS project execution are sought after. A viable contribution in this regard is improving knowledge retention in DS to predict socio-technical obstacles of an undertaking and derive best practices. Therefore, in this work, a template for describing the central characteristics of DS projects is proposed using a Design Science Research approach. The artifact is structured based on the common DS project stages and features 32 fields, enabling comparability and transparency in DS. The applicability of the template is demonstrated based on three DS use cases from the literature. While further steps for evaluation are pending, the template can serve as a foundation for developing a categorization model for DS projects in the future.
elib-URL des Eintrags: | https://elib.dlr.de/211461/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Toward Improved Knowledge Retention: A Template for Describing Data Science Projects | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||
Status: | im Druck | ||||||||||||||||||||||||||||
Stichwörter: | Data Science, Project Management, Knowledge Retention, Template, Design Science | ||||||||||||||||||||||||||||
Veranstaltungstitel: | 2024 IEEE International Conference on Big Data (Big Data) | ||||||||||||||||||||||||||||
Veranstaltungsort: | Washington D.C., USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 15 Dezember 2024 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 18 Dezember 2024 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften Institut für Datenwissenschaften > Datenmanagement und -aufbereitung | ||||||||||||||||||||||||||||
Hinterlegt von: | Pohl, Matthias | ||||||||||||||||||||||||||||
Hinterlegt am: | 06 Jan 2025 11:27 | ||||||||||||||||||||||||||||
Letzte Änderung: | 06 Jan 2025 11:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags