Gunkel, Jonas und Tundis, Andrea und Mühlhäuser, Max (2024) The Story of Mobility: Combining State Space Models and Transformers for Multi-Step Trajectory Prediction. In: 2nd ACM SIGSPATIAL International Workshop on the Human Mobility Prediction Challenge (HuMob'24), Seiten 19-24. Association for Computing Machinery. 2nd ACM SIGSPATIAL International Workshop on the Human Mobility Prediction Challenge (HuMob'24), 2024-10-29, Atlanta, USA. doi: 10.1145/3681771.3699912. ISBN 9798400711503.
PDF
843kB |
Kurzfassung
Machine learning models for predicting human mobility often require large datasets for training, which are not always available. As a result, methods capable of learning from limited data are essential. The Human Mobility Challenge 2024 was designed to evaluate the effectiveness of various approaches in such constrained scenarios. In this paper, we present a deep learning model that integrates state space models with transformers for multi-city trajectory prediction. Specifically, the model employs the state space model Mamba as an encoder to process long-range trajectories, while a transformer decoder predicts future locations by querying past trajectories with future timestamps. Our results demonstrate the model's effectiveness and suggest strong generalizability across cities. The approach ranked in the top 10 of the challenge, highlighting its competitiveness in limited-data settings.
elib-URL des Eintrags: | https://elib.dlr.de/211097/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | The Story of Mobility: Combining State Space Models and Transformers for Multi-Step Trajectory Prediction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 16 Dezember 2024 | ||||||||||||||||
Erschienen in: | 2nd ACM SIGSPATIAL International Workshop on the Human Mobility Prediction Challenge (HuMob'24) | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1145/3681771.3699912 | ||||||||||||||||
Seitenbereich: | Seiten 19-24 | ||||||||||||||||
Verlag: | Association for Computing Machinery | ||||||||||||||||
ISBN: | 9798400711503 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Human Mobility, Deep Learning, Transformer, State Space Models | ||||||||||||||||
Veranstaltungstitel: | 2nd ACM SIGSPATIAL International Workshop on the Human Mobility Prediction Challenge (HuMob'24) | ||||||||||||||||
Veranstaltungsort: | Atlanta, USA | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsdatum: | 29 Oktober 2024 | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D CPE - Cyberphysisches Engineering | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - urbanModel | ||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen | ||||||||||||||||
Hinterlegt von: | Gunkel, Jonas | ||||||||||||||||
Hinterlegt am: | 19 Dez 2024 10:35 | ||||||||||||||||
Letzte Änderung: | 19 Dez 2024 10:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags