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Abstract

Machine learning models for predicting human mobility often re-
quire large datasets for training, which are not always available. As
a result, methods capable of learning from limited data are essential.
The Human Mobility Challenge 2024 was designed to evaluate the
effectiveness of various approaches in such constrained scenarios.
In this paper, we present a deep learning model that integrates state
space models with transformers for multi-city trajectory prediction.
Specifically, the model employs the state space model Mamba as
an encoder to process long-range trajectories, while a transformer
decoder predicts future locations by querying past trajectories with
future timestamps. Our results demonstrate the model’s effective-
ness and suggest strong generalizability across cities. The approach
ranked in the top 10 of the challenge, highlighting its competitive-
ness in limited-data settings.
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1 Introduction

Predicting the future locations of citizens in urban areas is a critical
task with various applications, including traffic management and
disaster response. In recent years, machine learning models have
been used excessively and with great success to reproduce the
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individual mobility patterns [7]. However, such models require
extensive training data to generate realistic future trajectories. This
massive amount of data may not exist for some regions of interest,
rendering training a corresponding model difficult. The Human
Mobility Challenge 2024, held at SIGSPATIAL 2024, is designed to
test such a setting. Given mobility data of individuals from four
different cities, each city with a different amount of available data,
the task is to predict the trajectories of a defined set of individuals
from different cities over 15 days.

Predicting future trajectories has been approached with a variety
of machine learning approaches [7]. As trajectories form a sequence
of locations, similar to a sentence being a sequence of words, sev-
eral works adopted methods from natural language processing to
predict an individual’s future locations [4, 11, 13]. Recent meth-
ods often base on transformer models, which have been proven
powerful for modeling sequential dependencies [8, 10]. Recently, ad-
vances in state space models (e.g., Mamba [3]) have shown success
comparably to transformers. The recurrent structure with efficient
pre-computation of states alleviates the quadratic-time complexity
of attention without reducing performance. Consequently, state
space models have been proposed for various sequence-to-sequence
tasks [5, 6].

Following the success of language models for trajectory predic-
tion, we propose to combine recent advances in state space models
with earlier approaches to trajectory prediction using transform-
ers. Inspired by [14], we employ a Mamba encoder to encode a
past trajectory as context. Subsequently, a transformer decoder
queries the computed encodings to infer the locations at future
time stamps. Our analysis confirms that our model not only com-
petes with the performance of pure transformer-based models, but
also significantly reduces the computational effort, making it an
efficient solution for trajectory prediction.

1.1 Scenario Description

The Human Mobility Challenge 2024 focuses explicitly on multi-city
prediction. That is, predicting the mobility for a specific city based
on data from potentially different cities. The challenge data contains
trajectories from individuals in four cities, for each in different
quantity: The amount of provided trajectories ranges between 100k
(city A), 25k (city B), 20k (city C), and 6k (city D). The task consists
of predicting the last 15 days of 3000 individuals from city B, C, and
D, respectively, as depicted in fig. 1.
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Figure 1: Representation of the task. The goal is to predict
the trajectories of 3000 individuals from cities B, C, and D
for the last 15 days (marked in green). As training data and
prediction context, the trajectories of these individuals for
the first 60 days of the period (marked in blue), as well as
trajectories for the entire period of a large set of individuals
from City A, B, C, and D (marked in yellow) are provided.

2 Data

The data set provided for the Human Mobility Challenge 2024 con-
sists of reports of the individuals’ locations and their corresponding
time stamps over 75 days, as described in [12]. The locations are
represented as discrete coordinates of cells on a grid, into which
each city is divided. The grids have a cell size of 500m X 500m,
partitioning the cities’ areas into a total of 200 x 200 cells, respec-
tively. The location reports for a single individual form a trajectory
ordered by their temporal information. Each trajectory consists of
tuples (I, [y, d, t) representing the x and y coordinates (Ix and [y),
and the corresponding time stamp given by the day d and half-hour
interval .

The resulting trajectories are neither complete nor exclusively
report location changes. This means, on the one hand, that there
may be periods without reported locations for a given individual,
leading to trajectories of varying lengths. Moreover, most trajec-
tories report locations for only a fraction of time stamps, as seen
in fig. 2(a). On the other hand, the trajectories contain stationary
sub-trajectories that consist only of one location, as illustrated in
fig. 2(b).

For the task at hand, we define a trajectory as a sequence of
tuples 7 = (x,y,d,t, w, 5). Here, the elements x,y € {1,...,200}
specify the x- and y-coordinates on the grid, d € {0,..., 6} repre-
sents the day of the week, and ¢ € {0,...,47} constitutes the time
of the day as the corresponding half-hour interval. Considering
the periodicity of the mobility volumes, as depicted in fig. 3, we
introduce a binary variable w, describing whether it is a working
day or a weekend day. Moreover, we follow [11] and include 4,
representing the difference in time to the previously reported lo-
cation of the trajectory. Furthermore, we denote the elements of a
trajectory with masked locations by 7 and a tuple of coordinates

by I=(x.y).
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3 Method

Our model is designed to perform a multi-step prediction for future
trajectory locations. By predicting several locations in parallel, the
model must learn more complex dependencies within the provided
trajectories. Thereby, we aimed to reduce the risk of predicting
the last given location as the following location. We deemed this
property critical, as the provided data includes many trajectories
that contain repeating sub-sequences over a longer period (fig. 2(b)).
For inferring the future trajectory locations, the model is fed the
entire past trajectory as context. This context trajectory is processed
by an encoder module that adopts the task of computing represen-
tations of the respective sequence’s elements. The encoder’s output
is the basis for a subsequent decoder to compute representations
for the future locations. A final linear layer generates the location
probabilities for each step of the future trajectory. An overview of
the model’s architecture can be seen in fig. 4. In the following, the
different design choices of our method are portrayed in detail.

3.1 Embedding Layer

The model’s embedding layer embeds the input trajectory in the
initial phase. Following previous work [10, 11], each component of
a trajectory’s element (x, y, d, t, , §) is embedded individually. The
embeddings are then concatenated, serving as input to the encoder
and decoder.

3.2 Encoder

The encoder was chosen to build on the success of past work that
adopted methods from NLP, specifically transformer models [10, 11].
However, transformers, having quadratic complexity in sequence
length, may lead to slow training and inference times. We employ
Mamba [3], a recently proposed state space model, as the encoder
to reduce these times. In comparison to a transformer encoder,
Mambea is a strictly causal model. As such, the representation of
a sequence element at position i only depends on the sequence’s
previous elements. By stacking multiple Mamba layers equipped
with residual connections in between, the encoder is expected to
learn trajectory features similarly to a transformer encoder while
processing long inputs significantly faster.

During training, the encoder’s output is subject to a next-location
prediction loss. The idea behind this loss is to force the model to
learn representations of the trajectory’s elements that focus on the
most relevant features for predicting the future trajectory.

3.3 Decoder

The sequence of processed tokens, as obtained from the encoder,
is the basis for the decoder’s inference of the future trajectory.
Similarly to query-based methods in object detection [1] or next
action anticipation [2, 14], the decoder is trained to create candi-
dates for future locations by querying the encoder’s output. Via
cross-attention, the decoder combines the time stamps of future lo-
cations (representing the query vectors) with the processed context
(representing the key and value vectors).

By stacking several transformer decoders, each featuring a self-
attention layer, the decoder can update the location candidate for
each time stamp based on the whole sequence of future location
candidates.
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(b) Lengths of stationary sub-trajectories on logarithmic scale.

Figure 2: Histograms of trajectory characteristics. fig. 2(a) portrays the sparsity of trajectories: over 90% of trajectories have a
length that is less than half of the maximum possible length. The histogram in fig. 2(b) shows the distribution of stationary
sub-trajectories. These stationary sub-trajectories represent a significant share of the whole data. In average, more than every

fifth location is identical to its preceding location.
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Figure 3: Number of location visitations in all cities over the entire period. Clearly, the data exhibits strong periodicity. More
specifically, the weekends as days of decreased mobility volumes (marked as red) can be reasonably distinguished from the

workdays (marked as green).

The first decoder layer plays a crucial role, computing the initial
representations for the future locations and laying the founda-
tion for the subsequent layers. Starting from the second decoder
layer, the model features residual connections between them. Con-
sequently, each consecutive layer subsequently updates the initially
computed representations.

3.4 Prediction Head

Two linear layers compute the final output of the model, each
generating the probabilities for a single coordinate. Both layers
project the decoder’s output, representing the future locations,
to a vector of dimension 200, representing the possible x and y
coordinates.

3.5 Positional Encodings

Unlike transformers, Mamba, which can be interpreted as a recur-
rent model, does not require positional encodings representing the
input order. However, the transformer decoder critically depends
on such additional information in order to comprehend the relative

distances between the sequence’s elements. Instead of using stan-
dard sinusoidal positional encodings, which encode the absolute
position of an element in a sequence, we compute the positional
encodings based on the time stamp of the reported location. Conse-
quently, the positional encodings represent not only a strict order
of elements, but also their relative time difference.

3.6 Training Procedure

For training the model, we combine all available trajectory data
from the four cities as training data. Each individual’s trajectory is
split into a context sequence and a prediction sequence. The context
sequence serves as input to the encoder, and the time stamps of the
prediction sequence as input to the decoder. The training objective
is to infer the locations of the prediction sequence.

To increase the diversity of training samples, the trajectories are
randomly split into context and prediction sequence: for each batch,
3% — 10% of the trajectories serve as prediction sequence. Moreover,
depending on their length, the sequences are split randomly for
each epoch into sub-sequences, further augmenting the training
data.
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Figure 4: Architecture of the used model. The encoder is
trained to compute representations for all previous tokens,
respectively, via a next-location loss. The decoder takes fu-
ture time stamps and infers the corresponding locations via
cross-attention, which uses the encoder’s output to compute
the key and value.

3.7 Inference Procedure

Multiple multi-step predictions are performed autoregressively to
predict the future steps of a given individual over multiple days.
After predicting k future steps, these steps are appended to the
previous context, representing the context for the next prediction.
Consequently, the number of such multi-step predictions is intri-
cately dependent on the length of the total prediction window and
the number of steps for each prediction.

For the Human Mobility Challenge 2024, we used 5% of the con-
text length as the prediction window length for each prediction step.
This choice resulted in an average of 5.081 steps to be performed,
being similar across the different cities, as depicted in table 1.

Moreover, we adopted the strategy for suppressing long se-
quences of identical locations proposed in [11]. The authors multi-
plied the probability of consecutively predicting the same location
by a decay factor to increase the heterogeneity in sequences. For
this work, we set the decay factor to 0.8.

Table 1: Average number of inference steps to be performed
for the last 3000 individuals for each city.

City Inference Steps

B 5

C 4.969

D 5.275
total 5.081

Gunkel et al.

4 Experiments and Results

To evaluate the effectiveness of our model and justify central de-
sign decisions, we conducted multiple experiments resembling the
Human Mobility Challenge scenario. For each city, we restricted to
the individuals for whom data over the entire period is provided,
ignoring the individuals who were to be predicted for the chal-
lenge. For cities B, C, and D, we chose the last 1000 individuals to
serve as test individuals. We tested the model by evaluating the
prediction for these individuals for the last 15 days of the period.
Consequently, the entire trajectories for the remaining individuals,
along with the trajectories of the first 60 days for the test individ-
uals, constituted the training data for the experiments. From this
set of trajectories, 5% was held back as a validation set. Moreover,
we set the embedding dimension to 32 and used four layers for the
encoder and decoder, respectively.

We evaluated the results by calculating the GEO-BLEU [9] and
the dynamic time warping score (DTW) as similarity measures of
trajectories. GEO-BLEU has been developed to assess the similarity
of two trajectories by comparing their sub-trajectories. Hence, it
focuses on local features instead of assessing the trajectories’ global
similarity. DTW, on the other hand, aligns two given sequences
and subsequently computes their distance. Therefore, it evaluates
the similarity of the trajectories’ global pattern, supplementing
GEO-BLEU. For GEO-BLEU, a higher score indicates a greater simi-
larity, while for DTW, a lower score indicates a greater similarity
of trajectories.

4.1 Model

For analyzing the model’s architecture, we ablated its central com-
ponents. These encompass the Mamba encoder, the choice of posi-
tional encodings, and the auxiliary next-location loss, as introduced
in section 3.

To evaluate the performance of the Mamba encoder, we com-
pared it to a causal transformer encoder and a regular transformer
encoder. The results show not only that the Mamba encoder is com-
petitive to both transformer encoders but that it surpasses them
in terms of performance (table 2). Moreover, the results show that
employing a Mamba encoder significantly reduces training time.

Table 2: Comparison of different encoders.

Encoder GEO-BLEU DTW Training Time
Causal Transformer 0.285 32.39 1574s
Transformer 0.289 30.91 1616s
Mamba 0.301 28.98 1022s

Additionally, we compare our method of computing positional
encodings, which contain the relative time difference between se-
quence elements, to positional encodings that restrict themselves to
representing only the order of these elements. Our results indicate
that our positional encodings successfully introduced a relative
distance between the trajectory elements, improving the model’s
performance significantly, as seen in table 3.

Finally, we evaluate the role of the auxiliary next-location loss
applied to the encoder’s output by comparing the average losses
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Table 3: Comparison of different positional encodings.

Positional Encodings GEO-BLEU DTW
Standard 0.295 31.89

Relative (ours) 0.301 28.99

per epoch of training with the auxiliary loss to training without
the auxiliary loss. As illustrated in fig. 5, instructing the encoder to
compute optimized representations for predicting the sequence’s
respective consecutive locations enhances the model’s performance
in an initial training phase. However, during the majority of the
training period, this loss appears to restrict the model, preventing
it from attaining its full potential. Nevertheless, this restriction
diminishes with the progressing number of epochs, and the training
losses converge.

Training Loss Progression: With vs Without Auxiliary Loss

=~ Mean Loss - Without Auxiliary Loss
—8— Mean Loss - With Auxiliary Loss

Epochs

Figure 5: Effect of auxiliary next-location loss.

4.2 Training

Furthermore, we evaluated the training procedure, specifically the
inclusion of random trajectory split (section 3.6) during training
and the effect of the prediction window length. Splitting trajecto-
ries randomly aimed to increase the training set heterogeneity to
improve the model’s performance on unseen test data. While the
splitting did not influence GEO-BLEU significantly, it improved
DTW, as evidenced in table 4.

Table 4: Effect of randomly splitting trajectories during train-
ing.

Training Data GEO-BLEU DTW
Without Split 0.301 28.99

With Split 0.302 27.58

The effect of the prediction window length during training is
depicted in table 5. A random relative prediction length of 3-10%
of the context sequence length during training outperforms the
other tested variations, partially by a large margin. Note that in
the absolute length case, the same fixed prediction window length
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was used during inference. In the relative case, a prediction window
length of 5% was chosen during inference, independent of the used
length during training.

Table 5: Effect of different prediction window lengths during
training. Absolute refers to a fixed prediction window length,
relative refers to a prediction length as a percentage of the
context length.

Length GEO-BLEU DTW
20 (absolute) 0.260 35.20
50 (absolute) 0.283 30.97
5% (relative) 0.292 32.25
3-10% (relative) 0.301 28.99

4.2.1 Fine-tuning. Dividing the experiment into the three cities,
B, C, and D, we found significant differences in performance (see
table 6). In particular for city D, being underrepresented in the
training data, the model suffers from a notably worse performance
compared to cities B and C. Therefore, we evaluated the effect of
fine-tuning the model on city D data before inferring future trajec-
tories for the corresponding test individuals of city D. Our results
indicate that fine-tuning does not improve the model’s accuracy for
city D, as evidenced in table 7. Contrarily, training the model with
data from all cities resulted in better predictions, even compared to
a model trained from scratch only with data from city D.

Table 6: Performance split by city.

City GEO-BLEU DTW

B 0.307 24.93
C 0.297 18.75
D 0.297 43.28

Table 7: Effect of fine-tuning on city D.

Model GEO-BLEU DTW
Fine-tuned on City D 0.289 49.39
Trained on City D 0.230 46.04
Trained on All Cities 0.297 43.28

4.3 Inference

For the inference procedure, we tested different prediction window
lengths and decay factors. The results are presented in table 8 and
table 9.

We found that predicted sequences benefit from a long prediction
length. Notably, predicting the entire future trajectory at once did
not diminish the performance, although the model was initially
trained to predict the next 3-10%.
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Table 8: Comparison of different prediction window lengths
during inference.

Length GEO-BLEU DTW

3% 0.297 29.35
5% 0.301 28.99
7% 0.303 28.59
10% 0.305 28.23
all 0.308 28.38

The effect of different decay factors (section 3.7) can be assessed
as marginal, as evidenced in table 9. Lower decay factors appear
to improve a trajectory’s local features, while higher decay factors
seem superior regarding global features, as evidenced by the im-
proving GEO-BLEU and degrading DTW score for decreasing decay
factors.

Table 9: Comparison of different decay factors during infer-
ence.

Decay Factor GEO-BLEU DTW

1 0.296 28.53
0.9 0.298 28.79
0.8 0.301 28.99
0.7 0.303 29.24

4.4 Zero-Shot Application

Motivated by the challenge’s context of multi-city mobility pre-
diction, we evaluated the zero-shot performance of our model. To
do this, we trained our model with the trajectories over the entire
period of only cities A, B, and C and evaluated on the first 3000
individuals of city D. Our results underscore the potential of our
model, as it has learned general trajectory characteristics that are
transferable across cities. We achieved a GEO-BLEU score of 0.298
and a DTW score of 42.86, showcasing its promising performance.
This result closely matches the results for city D, as presented in
table 6. Consequently, one may assume that the model did not
only learn trajectory characteristics that are transferable across
cities but characteristics that are independent of the underlying
cities. However, further experiments are needed to validate this
assumption.

5 Conclusion and Limitations

This paper presented a sequence-to-sequence model specifically
designed to capture long-term dependencies in non-equidistant
trajectories. The proposed model is based on past success of trans-
former and state space models in sequence modeling. The model’s
encoder-decoder architecture is capable of creating realistic tra-
jectories over a long period: our results ranked in the top ten of
the Human Mobility Challenge 2024. However, there exist several
limitations that future work can elaborate on. For example, the
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proposed method does not include any data on the city structures.
Future work may study how to incorporate data such as the loca-
tions of point of interest as additional context. Moreover, further
analyzing the proposed model’s zero-shot capabilities and testing
strategies for further improvement is an exciting field for future
work, directly related to the presented experiments.
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