Kaltenborn, Julia und Lange, Charlotte Emilie Elektra und Ramesh, Venkatesh und Brouillard, Philippe und Gurwicz, Yaniv und Nagda, Chandni und Runge, Jakob und Nowack, Peer und Rolnick, David (2023) Climateset: A large-scale climate model dataset for machine learning. In: 37th Conference on Neural Information Processing Systems, NeurIPS 2023, Seiten 21757-21792. Advances in Neural Information Processing Systems. Thirty-seventh Conference on Neural Information Processing Systems, 2023-12-10, New Orleans, USA. ISSN 1049-5258.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://proceedings.neurips.cc/paper_files/paper/2023/file/44a6769fe6c695f8dfb347c649f7c9f0-Paper-Datasets_and_Benchmarks.pdf
Kurzfassung
Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) community has taken an increased interest in supporting climate scientists’ efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a “super-emulator” can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale
elib-URL des Eintrags: | https://elib.dlr.de/210927/ | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||||||||||
Titel: | Climateset: A large-scale climate model dataset for machine learning | ||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||
Datum: | Dezember 2023 | ||||||||||||||||||||||||||||||||||||||||
Erschienen in: | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 | ||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 21757-21792 | ||||||||||||||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||||||||||||||
Verlag: | Advances in Neural Information Processing Systems | ||||||||||||||||||||||||||||||||||||||||
ISSN: | 1049-5258 | ||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Benchmarking, Machine Learning, Climate Models | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | Thirty-seventh Conference on Neural Information Processing Systems | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | New Orleans, USA | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||||||
Veranstaltungsdatum: | 10 Dezember 2023 | ||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung, D - keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Hochsprung, Tom | ||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 06 Jan 2025 11:34 | ||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 06 Jan 2025 11:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags