Al-Bataineh, Bara und Schindler, Sirko und Peters, Diana und Paradies, Marcus und Pohl, Matthias (2025) A systematic review of federated statistical heterogeneity in UAV applications. CEAS Aeronautical Journal. Springer. doi: 10.1007/s13272-025-00865-8. ISSN 1869-5590.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://link.springer.com/article/10.1007/s13272-025-00865-8
Kurzfassung
This systematic literature review explores Federated Learning (FL) within the context of Unmanned Aerial Vehicle (UAV) applications. FL works by training a global model among clients, where the model is trained locally on each client, and only the model updates are shared. This approach maintains privacy and enables collaborative learning without sharing raw data. The collaborative efforts of multiple UAVs, however, introduce statistical heterogeneity in the collected sensing data due to variations in their respective monitoring areas. In this review, we analyze 31 papers published between 2016 and October 2023. Our review highlights the data properties, FL frameworks, applications, and evaluation methodologies used in these studies. We provide a detailed classification of the current state-of-the-art in FL, particularly focusing on approaches to manage statistical heterogeneity. This review also includes an assessment of the various evaluation methods used in the literature. This review offers a concise overview of the advancements made in addressing statistical heterogeneity in research studies. We will highlight key progress, identify persistent challenges, and explore future research directions. Ultimately, our goal is to provide insights into the ongoing developments in Federated Learning applications for UAV.
elib-URL des Eintrags: | https://elib.dlr.de/210556/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | A systematic review of federated statistical heterogeneity in UAV applications | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2025 | ||||||||||||||||||||||||
Erschienen in: | CEAS Aeronautical Journal | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1007/s13272-025-00865-8 | ||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||
ISSN: | 1869-5590 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Aviation Federated learning Statistical heterogeneity Non-IID Machine learning UAV | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L - keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - keine Zuordnung | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und -aufbereitung | ||||||||||||||||||||||||
Hinterlegt von: | Pohl, Matthias | ||||||||||||||||||||||||
Hinterlegt am: | 29 Aug 2025 14:27 | ||||||||||||||||||||||||
Letzte Änderung: | 01 Sep 2025 08:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags