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Abstract
This systematic literature review explores Federated Learning (FL) within the context of Unmanned Aerial Vehicle (UAV) 
applications. FL works by training a global model among clients, where the model is trained locally on each client, and only 
the model updates are shared. This approach maintains privacy and enables collaborative learning without sharing raw data. 
The collaborative efforts of multiple UAVs, however, introduce statistical heterogeneity in the collected sensing data due to 
variations in their respective monitoring areas. In this review, we analyze 31 papers published between 2016 and October 
2023. Our review highlights the data properties, FL frameworks, applications, and evaluation methodologies used in these 
studies. We provide a detailed classification of the current state-of-the-art in FL, particularly focusing on approaches to man-
age statistical heterogeneity. This review also includes an assessment of the various evaluation methods used in the literature. 
This review offers a concise overview of the advancements made in addressing statistical heterogeneity in research studies. 
We will highlight key progress, identify persistent challenges, and explore future research directions. Ultimately, our goal 
is to provide insights into the ongoing developments in Federated Learning applications for UAV.
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1  Introduction

According to Cisco, There will be over 75 billion Internet 
of Things (IoT) devices in 2025, which is 2.5 times as many 
as the 31 billion IoT devices that existed in 2020 [1]. IoT 
devices include sensors, wearable devices, smartphones, 
connected cars, and Unmanned Aerial Vehicles (UAVs). 

UAVs, also known as drones, have gained popularity due 
to their flexibility, line-of-sight (LoS) connections, and 3D 
mobility [2]. UAVs can be employed in various applications, 
including military, civil, environmental remote sensing, and 
agriculture. Also, UAVs are widely utilized for forest fire 
management, pollution and air quality assessment, coastal 
ocean observations, cloud and precipitation assessment, and 
severe storm monitoring applications [3]. Their adaptability 
and versatility make UAVs a valuable asset in various indus-
tries and applications.

The adoption of artificial intelligence, particularly 
machine learning (ML) techniques, has gained traction in 
enhancing UAV capabilities [4]. Traditionally, ML tech-
niques heavily depend on cloud processing resources while 
UAVs assume the role of data collectors [5]. UAVs carry 
various types of equipment, such as sensors, cameras, and 
communication devices [6]. They collect data through their 
sensors and then transmit the data to the cloud for process-
ing and modeling. Furthermore, they can also assist IoT 
devices that are incapable of transmitting data over a long 
distance due to energy constraints. UAVs have the ability 
to dynamically move towards IoT devices, collect the data, 
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and transmit it to other devices or the cloud which are out of 
the communication range of the data-producing IoT devices.

However, there are challenges associated with transmit-
ting data to the cloud. First, the data collected by each UAV 
potentially cannot be freely shared due to privacy or data 
protection concerns, since it might contain sensitive infor-
mation (e.g., security-related observations) [7]. Second, 
the latency from sending raw data to receiving a decision 
is unacceptable for some real-time UAV applications (e.g., 
autonomous drones monitoring and target tracking) [8]. 
Lastly, the transfer of huge amounts of raw data, such as 
image and video, to the cloud consumes a lot of bandwidth 
and energy, which is unacceptable for UAV networks with 
limited bandwidth and energy supply [9]. Therefore, it would 
be greatly beneficial if the ML model training could be con-
ducted in a distributive manner in UAV networks directly, 
without sending data to the cloud. This has led to a growing 
interest in Federated Learning (FL), which addresses the 
data privacy concerns and communication overhead associ-
ated with centralized model training [10].

Introduced FL was first proposed in 2016 and has 
been widely used in practice since then [11]. For exam-
ple, Gboard [12] uses FL to train an ML model to suggest 
search queries based on the typing context. FedHealth [13], 
a framework for wearable healthcare, can achieve accurate 
and personalized healthcare without compromising privacy 
and security. One of the main objectives of this systematic 
review is to explore the utilization of FL in UAV applica-
tions. The major contributions are as follows: Our major 
contributions include an extensive review of studies pub-
lished from 2016 to October 2023 addressing the challenge 
of non-Independently and Identically Distributed (non-IID) 
data distributions in FL (Section  2) in the context of UAV 
applications. The methodology for selecting and analyzing 
these studies is based on the PRISMA flow diagram [14]. 
We provide an in-depth summary of the selected studies 
related to statistical heterogeneity, encompassing aspects, 
such as the FL architecture, learning processes, environmen-
tal attributes, non-IID data distributions, data realism, appli-
cations, and their evaluation. Based on the included studies, 
we identify key open problems and outline potential future 
research directions.

This review follows a structured organization. Section 2 
provides necessary background information while Sect. 3 
describes the research method used to conduct the study. 
In Sect. 4, the focus is on the distribution of training data. 
Section 5 delves into state-of-the-art frameworks, machine 
learning models used, and the types of UAV client com-
munication in the aggregation step. Section 6 explores vari-
ous use cases, and Sect. 7 outlines the evaluation matrices 
employed. Section 8 outlines the open challenges and future 
directions encountered throughout the study. Finally, we pre-
sent the conclusion in Sect. 9.

2 � Federated learning

Alsamhi et al. proposed a first server-based FL framework 
designed for UAV networks (see Fig. 1) which relies on a cen-
tralized server that coordinates the FL process [8]. According 
to them, the process can be summarized as follows:

•	 Step1: Data collection. The UAV clients acquire private 
data through their sensors from various areas.

•	 Step2: Global model broadcasting. The UAV leader 
sends the global model to all UAV clients.

•	 Step3: Local model training. UAV clients receive a copy 
of the global model and employ it along with their local 
data for training their respective local models.

•	 Step4: Upload local model weights. The UAV leader 
receives the model weights from the participating UAV 
clients.

•	 Step5: Aggregation. The UAV leader aggregates received 
model weights into a new global model.

The learning process of FL involves minimizing a loss func-
tion on each UAV client through a weighted aggregation 
method (e.g., federated average (FedAvg) [11]). The goal is 
to minimize the overall objective function [15]:

where

where f (w) denotes the loss function for the global model 
and w denotes the model parameters. Fk(w) is the local loss 
function for the k-th UAV client, defined as the average loss 
over its local dataset. fi(w) is the loss function for the i-th 
data sample of the kth UAV client. Let n be the total num-
ber of data samples across the UAV clients, where the kth 
UAV client has a dataset, denoted as Pk , consisting of nk 
data samples.

In each iteration of the FL process, each UAV client aims 
to minimize its local loss function using its local data.

2.1 � Non‑IID data

When the local data contains non-Independently and Identi-
cally Distributed (non-IID) attributes, i.e., the distribution 
of data across UAV clients is not uniform, significant dis-
parities can arise between the local models and the global 
model [16].
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As shown in Fig. 2, in the IID data scenario, the average 
model wt+1 , obtained by aggregating local models, aligns 
closely with the global optimal model w∗ . This alignment 
occurs because it is equidistant from each local optimal 
model solution w∗

1
 and w∗

2
 . However, with non-IID data, the 

global optimal solution w∗ may be more closely aligned with 
one of the local optimal models, specifically w∗

2
 . This results 

in a discrepancy between the averaged model wt+1 and the 
global optimal solution w∗ , as data heterogeneity leads to 
an uneven influence on the averaged model. If these local 
model weights are subsequently uploaded to the UAV leader 
for aggregation, it can negatively impact the accuracy of 
the global model [16]. UAV clients frequently generate and 
collect data in a highly non-IID manner across the network. 
When multiple UAV clients collaborate, the difference in the 
monitoring area of each UAV client causes statistical hetero-
geneity in the collected sensing data. There are several ways 
in which the data among UAV clients can deviate:

•	 Label distribution. The distribution of available labels 
across different UAV clients is not uniform or bal-
anced. Each UAV client captures specific types of data 
or objects, resulting in variations in labeling schemes 
among UAV clients. Two different kinds of label distri-
bution have been investigated in the literature: (1) Each 
UAV client holds data samples with a fixed number of 

labels, or (2) a portion of the data samples of labels is 
distributed to UAV clients with a certain probability.

•	 Feature distribution. Features of the collected data dif-
fer across UAV clients. For instance, images of the same 
object may exhibit variations in terms of brightness, 
occlusion, camera sensor readings, and more.

•	 Quantity distribution. The size of the local dataset var-
ies across UAV clients.

A non-IID data distribution in UAV clients affects the per-
formance of the ML model (i.e., learning accuracy, stability 
of the FL algorithm, convergence behavior, and communica-
tion efficiency) [17]. The objective of this systematic review 
is to provide a comprehensive and up-to-date exploration of 
statistical heterogeneity in FL, particularly in the context of 
UAV applications.

3 � Research method

We followed the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) approach to 
conduct our systematic review [14]. PRISMA provides a 
comprehensive set of guidelines to ensure the transparent 
and rigorous reporting of systematic review processes and 
findings. By following PRISMA, we maintain a structured 

Fig. 1   Federated Learning for UAV computing collaboration



	 B. Al‑Bataineh et al.

and methodical approach throughout our research, from the 
formulation of research questions and search process to data 
extraction, quality assessment, and the synthesis of results.

3.1 � Research questions

We divide the main objective into the following research 
questions: 

RQ 1	� What are specific data characteristics in UAV appli-
cations, in particular with respect to non-IID distri-
butions and training data? (Sect. 4)

RQ 2	� What are the state-of-the-art FL frameworks applied 
in UAVs to mitigate the challenges posed by non-
IID data distributions and what are their specific 
capabilities and limitations? (Sect. 5)

RQ 3	� In which UAV application scenarios has FL been 
employed to handle non-IID data distributions? 
(Sect. 6)

RQ 4	� Which evaluation metrics are essential for assessing 
the performance and efficiency of FL in the presence 

of non-IID data distributions in UAV applications? 
(Sect. 7)

RQ 5	� What are the open challenges and future directions 
of FL related to UAV applications? (Sect. 8)

3.2 � Search process

In our systematic review, we followed the PRISMA flow 
diagram [18], shown in Fig. 3, which outlines the review’s 
main steps: 

1.	 In the identification step, we conducted a search cov-
ering 1 January 2016 and 2 October 2023, using the 
following search engines and databases: IEEE Xplore,1 
PubMed,2 Web of Science,3 ACM Digital Library,4 
Arxiv,5 SpringerLink,6 Scopus,7 ScienceDirect,8 and 

Fig. 2   Effects of IID and non-IID data on FL

1  https://​ieeex​plore.​ieee.​org/​Xplore/​home.​js
2  https://​pubmed.​ncbi.​nlm.​nih.​gov/
3  https://​www.​webof​scien​ce.​com/​wos/​woscc/​basic-​search
4  https://​dl.​acm.​org/
5  https://​arxiv.​org/
6  https://​link.​sprin​ger.​com/
7  https://​www.​scopus.​com/​search/​form.​uri?​displ​ay=​basic#​basic
8  https://​www.​scien​cedir​ect.​com/

https://ieeexplore.ieee.org/Xplore/home.js
https://pubmed.ncbi.nlm.nih.gov/
https://www.webofscience.com/wos/woscc/basic-search
https://dl.acm.org/
https://arxiv.org/
https://link.springer.com/
https://www.scopus.com/search/form.uri?display=basic#basic
https://www.sciencedirect.com/
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Google scholar.9 Our search strategy revolved around the 
terms “federated learning”, “statistical heterogeneity”, 
and “Unmanned Aerial vehicle” and included synonyms 
and abbreviations as supplementary terms consisting of 
"federated ML", "federated artificial intelligence", "fed-
erated AI", "non-IID", "UAV", and "Edge Device" to 
increase the search results. This initial search resulted 
in 2869 studies satisfying the search criteria. Then, 369 

studies were removed due to duplications, ending with 
2500 result studies in the identification step.

2.	 In the screening step, we reviewed 2500 resulting studies 
based on their titles, abstracts, and keywords, using the 
following inclusion and exclusion criteria. We excluded 
2110 studies based on the following exclusion criteria: 
(i) non-relevance of the focused subject, (ii) categorized 
as books, dissertations, or theses, (iii) identified as sur-
vey articles, or (iv) written in a non-English language.

Fig. 3   Study selection using PRISMA flow diagram method consisting of identification step, screening step, and included step

9  https://​schol​ar.​google.​com/

https://scholar.google.com/
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	   We ended up with 390 studies that (i) discuss the sta-
tistical heterogeneity in FL for UAV applications, and 
(ii) are published in English for further full-text assess-
ment.

	   Next, 359 studies were excluded based on the exclu-
sion criteria during the full-text assessment.

3.	 In the inclusion step, 31 studies summarized in Table 4 
(see Appendix) were selected for further analysis, and 
their results are discussed in this review. Table 5 (see 
Appendix) presents the list of abbreviations and syno-
nyms used in this systematic review.

3.3 � Analysis and synthesis

An initial analysis of the included studies shows that statis-
tical heterogeneity in FL for UAV applications is a rather 
recent research area. Figure 4 illustrates this aspect with 
the distribution of included studies by publication year. We 
observe that from the studies selected 15% were published 
in 2021, 44% were published in 2022, and 44% of studies 
published in 2023 before October. This shows that the pub-
lication rate and field of interest have grown significantly. 
We classified the included studies into the following topics 
within the context of statistical heterogeneity in FL for UAV 
applications: 

1.	 Data properties (see Sect. 4)

•	 Non-IID Distributions
•	 Training Data

2.	 FL Frameworks (see Sect. 5)

•	 State-of-the-Art Methods
•	 Client–Server Communication

3.	 Applications (see Sect. 6)
•	 Use cases

4.	 Evaluation Metrics (see Sect. 7)

•	 Accuracy
•	 Convergence Analysis

The next section explores the studies that focus on each of 
these topics considering the research questions proposed for 
this review.

4 � Data properties

This section aims to include an in-depth analysis of various 
non-IID data distribution utilizing FL techniques in UAV 
applications.

4.1 � Non‑IID distributions

The training data on each UAV client heavily depends on 
the usage of particular local devices, and therefore, the 
non-independently and Identically Distributed (non-IID) 
data distributions of UAV clients may be entirely differ-
ent from each other. For example, each UAV client collects 
data from different regions, experiences varying weather 
conditions, and employs different sensors or data collection 
methodologies.

Based on the examined studies, we derive the follow-
ing four categories of non-IID data: (1) quantity distribu-
tion, (2) label distribution, (3) feature distribution, and (4) 
mixed-type distribution and summarize the categorization 
in Table 1.

Almost half of all studies have focused on label distri-
bution among UAV clients. Label distribution has been 
determined using one of two methods: First, Dirichlet dis-
tributions which are commonly used as prior distribution 
in Bayesian statistics [48] and are chosen to simulate real-
world data distributions. Here, one can adjust the imbalance 
level by varying the alpha parameter where smaller values 
lead to more unbalance distributions [19, 21, 24, 35]. Sec-
ond, the process involves sorting labeled data and dividing it 
into shards among UAV clients [21, 22]. One of the studies 
focused on quantity distribution and determined it through 
random sampling from a Gaussian distribution [34]. The 
remaining studies, which did not specify the non-IID distri-
bution category, used random partitioning instead.

Fig. 4   Distribution of selected studies by publication year

Table 1   Summary of non-IID distribution categories employed in the 
FL for UAV applications

Non-IID distribution categories Studies

Label distribution [5, 19–32]
Quantity distribution [29, 33–37]
Feature distribution [5, 33, 34]
Mixed-type (Label and Quantity) Distribution [19, 21, 38–40]
Mixed-type (Label and Feature) distribution [41]
Undefined non-IID distribution [2, 42–47]
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4.2 � Training data

The impact of a non-IID data distribution on the perfor-
mance of the global model is of critical concern, as high-
lighted by the studies. For example, a high sensor noise level 
in a local device can significantly degrade the quality of the 
local dataset [33]. This degradation subsequently results in 
a decline in the precision of the global model, which ulti-
mately affects the quality of model predictions. Moreover, 
non-IID data can slow down convergence rates in learning 
models, making the training process less efficient and more 
time-consuming. This, in turn, impacts the accuracy of the 
global model, which becomes skewed [49]. These observa-
tions emphasize the paramount importance to address non-
IID data distribution challenges to ensure optimal model 
performance and robustness.

Mitigating the impact of non-IID data distributions in 
UAV applications is vital for enhancing the global model 
performance. Thus, the important step is to represent real-
world UAV scenarios accurately using realistic datasets. By 
selecting or creating datasets that closely mimic the data 
collected by UAVs during their missions, we can improve 
the quality of training data. This can involve incorporating 
diverse environmental conditions, various flight scenarios, 
and factors like sensor noise and different data collection 
methodologies into the dataset. By enhancing the realism 
of datasets, we can work towards minimizing the negative 
effects of non-IID data distribution and ensuring the success 
of UAV applications in real-world scenarios.

Table 2 provides an overview of the datasets used in stud-
ies, along with corresponding paper references, and classi-
fies these datasets based on realism. Additionally, the table 
displays the ML models used for training these datasets.

4.3 � Characteristics of realistic datasets

Unfortunately, a generic framework to characterize the real-
ism of a dataset could not be identified in scientific research. 
However, the prevalence of challenges stemming from unre-
alistic data significantly undermines the integrity of the 
research items collected.

Many datasets are designed specifically for algorithm 
benchmarking rather than reflecting actual data collection 
processes. In the context of UAV networks, simulated envi-
ronments may not accurately capture the complexities of 
real-world UAV sensor data [22, 33]. Additionally, synthetic 
training data often overlooks UAV-specific challenges, such 
as motion blur, vibration effects, and sensor limitations [6]. 
Standard image datasets like MNIST [62] contain clean, cen-
tered, and size-normalized graphics that rarely reflect real-
world conditions. In UAV contexts, this issue is magnified 
as aerial imagery involves complex variations in altitude, 
angle, lighting, and environmental conditions [6, 54, 55]. 

However, the data is primarily generated using simplified 
distributions. Traditional benchmark datasets lack natural 
variations in lighting, background, positioning, and noise. 
This presents a particular challenge for UAV applications 
where environmental factors significantly influence data 
quality. Aerial imagery for scene classification [57] must 
account for variable altitudes and perspectives. Power line 
inspection datasets [44, 46] need to capture seasonal varia-
tions and weather conditions. Agricultural monitoring [36, 
53] requires adaptation to different growth stages and light-
ing conditions. This clearly highlights a limited variability 
in the data. Non-realistic datasets often focus on narrowly 
defined problems that do not generalize well. UAV applica-
tions frequently operate in heterogeneous environments. For 
instance, a UAV trained in one geographic area may perform 
poorly in other regions [27]. Additionally, models developed 
for specific detection tasks, such as identifying prohibited 
items, may not be effective when applied in different security 
contexts [45, 56] (Domain Specificity).

Realistic datasets accurately represent the true statistical 
properties of the phenomena being studied (Natural Dis-
tribution). In UAV applications, disaster monitoring data-
sets must encompass genuine disaster scenarios, capturing 
their full complexity [42, 54]. Natural scene classification 
requires accurately representing the true distribution of 
environmental features [55]. Traffic monitoring must reflect 
actual traffic patterns and diverse weather conditions . Real-
world data are often affected by natural noise, class imbal-
ances, and the presence of outliers (Inherent Complexity). 
UAV application datasets must address non-IID data across 
different UAVs in a network [17, 35, 54], and natural sensor 
noise from UAV movement and environmental interference 
[4]. Capturing data as it would be encountered during actual 
deployment is essential (Ecological Validity). UAV feder-
ated learning systems encounter unique challenges. Intermit-
tent connectivity issues can disrupt the synchronization of 
models, leading to inconsistencies that compromise overall 
performance [28]. Furthermore, energy constraints impose 
limitations on both computational power and communica-
tion capabilities, restricting the ability to process and share 
data effectively [32, 36, 37]. Additionally, dynamic position-
ing requirements can hinder the consistency of data collec-
tion, making it challenging to maintain reliable and accurate 
information over time [47]. Accounting for concept drift and 
changing patterns over time is essential (Temporal Rele-
vance). UAV systems should address seasonal variations 
(e.g., in agricultural monitoring [43, 53]), evolving security 
threats (e.g., in intrusion detection [32, 51]), and changing 
environmental conditions (e.g., in disaster response [42, 
54]).

The Table 2 indicates that most studies rely on overly 
simplistic datasets, predominantly the MNIST dataset. We 
argue that MNIST is unrealistic for unmanned aerial vehicle 
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(UAV) applications due to Data Domain Mismatch and inad-
equate Data Size and Complexity. The MNIST dataset, con-
sisting of small grayscale images of digits, differs greatly 

from the high-resolution aerial imagery, sensor data, and 
video streams typical in UAV operations. This domain mis-
match hinders the effective training of models on UAV data. 

Table 2   Overview of Datasets 
with corresponding ML models 
and realism

Datasets References Realistic ML model

Cityscapes [50] [33] ✓ DDRNet [33]
FCNN [33]

CIC-IDS2017 [51] [34] ✓ RNN [34]
RF [34]
DT [34]
SVM [34]
GAN-LSTM [34]
CGAN-LSTM [34]
FL-CGAN-LSTM [34]

AIDER [52] [42] ✓ VGG16 [42]
ResNet152 [42]
Inception ResNet [42]

IDC [53] [43] ✓ Not-mention
FLAME [54] [36] ✓ CNN [36]

Xception [36]
Aerial scene classification [55] [29] ✓ CNN [29]

ResNet-18 [29]
Dataset generated by the authors from 

NWPU-RESISC4Google Earth, 
different public repositories

[41] ✓ R-CNN [41]
YOLOV3 [41]

PIDray [56] [45] ✓ YOLOv7 [45]
SSD [45]
R-CNN [45]

Dataset generated by the authors 
using four different UAV models’ 
stock transmissions

[26] ✓ CNN [26]

RSSCN7 [57] [30] ✓ CNN with BN [30]
CNN [30]
ResNet 18 [30]

SVHN [58] [47] LeNet [47]
Cifar-10 [59] [20, 23, 24, 38, 46] CNN [20, 46]

RL [38]
ResNet-9 [24]

Cifar-100 [59] [23, 35] CNN [35]
Fashion-Mnist [60] [5, 24, 25, 27, 35, 47] CNN [5, 27, 35]

FCNN [25]
LeNet [47]
ResNet-9 [24]

Shakespeare [61] [5] LSTM [5]
MNIST [62] [5, 19–23, 25, 27, 28, 33, 

35, 38, 39, 44, 46]
CNN [5, 19, 20, 22, 

27, 32, 35, 39, 44, 
46]

FCNN [22, 25, 33]
RL [38]
AlexNet [21]
ResNet-9 [24]

Sent140 [61] [5] LSTM [5]
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Additionally, with only 60,000 training images and 10,000 
test images, the MNIST dataset is too limited for the diverse 
challenges faced in real-world UAV applications. Smaller 
datasets like MNIST fail to provide the necessary generaliza-
tion for these complex tasks, rendering them insufficient for 
capturing the intricacies of actual UAV data.

4.3.1 � Indication of realistic datasets

The creation of a robust assessment framework to evaluate 
dataset realism remains an important open research question 
and will be part of future work. However, our research has 
identified several key indicators that can help gauge dataset 
realism.

It is essential to assess whether data was collected from 
genuine UAV operations or from artificially created scenar-
ios. The data collection process must effectively capture 
UAV movement patterns, altitude variations, and sensor lim-
itations, as these factors greatly impact performance and reli-
ability. Further, the dataset must reflect the distribution of 
data in real UAV deployments, capturing the non-IID nature 
of distributed UAV networks. Various complexity measures 
can effectively characterize the realism of UAV datasets. 
Assessing the heterogeneity among different devices is cru-
cial, as it impacts performance and interoperability. Metrics 
such as entropy and class separability can quantify the intrin-
sic difficulty. Entropy reveals data uncertainty, while class 
separability measures how well different data categories can 
be distinguished. Another indicator is the transferability 
of a model performance to real UAV applications while a 
model is trained on a dataset. Further performance can be 
identified through cross-domain applicability between dif-
ferent operational environments [24, 27, 30].

5 � Federated learning frameworks

Over time, researchers have increasingly directed their focus 
towards addressing the non-IID data challenge in FL. In this 
section, we discuss these methods in detail.

5.1 � State‑of‑the‑art methods

Over time, researchers have increasingly directed their focus 
towards addressing the non-IID data challenge in FL. In this 
section, we discuss these methods in detail.

5.1.1 � Data sharing

Data sharing is the method that involves creating a small 
subset of data that is shared globally among all edge devices 
(UAV clients and UAV leader). This subset has a uniform 
distribution over classes, which helps to mitigate non-IID 

issues. Tursunboev et al. employ commonly shared data con-
structed offline at the UAV leader by collecting representa-
tive data samples from the UAV clients to effectively solve 
the divergence issue. Additionally, they introduce a hierar-
chical aggregation of local models from both UAV clients 
and UAV leader to update the global model [5]. Similarly, 
Reus-Muns and Chowdhury employ a centralized subset 
of globally shared data among all UAV clients. They com-
bine this data-sharing method with a weighted loss func-
tion that considers the dataset’s non-uniform class distribu-
tion, thereby scaling the loss for each training unit based on 
class distribution [26]. The experiment results indicate that 
already sharing less than 5% of the global data can lead to 
performance improvements.

5.1.2 � Split learning

Split Learning (SL) [9, 63] is a promising variant of FL 
where the ML model is split into several sub-models with 
the specific layer known as the cut layer and distributing 
them to different edge devices which facilitates distrib-
uted learning via sharing the cut layer’s activations, called 
smashed data. Liu et al. [21, 22] have developed the algo-
rithm outlined in Fig. 5 to tackle the challenges posed by 
non-IID data among UAV clients in a wireless network. 
Their methodology involves selecting a subset of UAV cli-
ents to implement SL ( un, un + 1 ) with lower computational 
capability. The remaining UAV clients are assigned to FL 
( u1, uN ), which involves less communication overhead when 
the dataset is large.

The learning process involves UAV clients conducting 
parallel, local model training. For FL, UAV clients ( u1, uN ) 
receive global model parameters from the Base Station (BS) 
(UAV leader) ( wt ) and proceed with local training on their 
respective local datasets D1, ...,DN . In contrast, SL UAV cli-
ents ( un, un + 1 ) receive a sub-model up to the cut layer of 
the global model from the BS. The outputs of the forward 
propagation at the cut layer ( an

t
, an

t
+ 1 ) are sent back to the 

BS, which completes the remaining forward propagation 
from the cut layer to the last layer we

t
 and computes gradi-

ents wn,e
t ,w

n+1,e
t  from the last layer to the cut layer. These 

gradients at the cut layer gn
t
, gn+1

t
 , and only these gradients, 

are sent back to the UAV client, which then completes the 
remainder of the back propagation. The aggregation of 
model updates takes into account both the average local 
model updates from FL UAV clients △w1

t
,△wn

t
 and the 

updates from SL UAV clients △w
n,1
t ,△w

n+1,1
t  . The learning 

process iterates until a desired convergence performance is 
achieved or the final iteration is reached.

Sun et al. exclusively applied the SL methodology to all 
UAV clients without adopting a hybrid approach as used 
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by earlier works. Their focus was on using SL for assisted 
image classification tasks [29].

5.1.3 � Clustering

Hoang et al. presented a novel clustered and decentralized 
FL framework tailored for UAV swarms. The research [20] 
introduced an iterative clustering algorithm based on the 
K-means algorithm to efficiently partition the UAV network 
into clusters, ensuring connectivity among Cluster-Head 
(CH) UAVs (UAV leader). Two inter-cluster aggregation 
schemes, Fully Coordinated Aggregation (FCA) and k-Hop 
Aggregation (kHA), are proposed and evaluated for dif-
ferent learning scenarios. The evaluation for FCA closely 
aligns with conventional FL and achieves good performance 
results, while 1HA (K=1) exhibits delayed convergence, par-
ticularly in non-IID distributions.

Pei et  al. proposed a novel approach, named Clus-
tered Federated Learning Multi-Classifier, to address the 

challenges posed by heterogeneous decentralized data in 
UAV edge devices. The study [23] introduces multiple clas-
sifiers to satisfy diverse UAV client needs. To manage the 
additional storage, computation, and transmission overheads 
associated with multiple classifiers, the study presents two 
optimization strategies: first, a Multi-Head Classifier (MH) 
for sharing feature representations among classifiers, and 
only multiple branches are introduced at the final classifier 
layer. Second, the Stochastic classifier (SC) assumes that the 
classifiers obey a certain prior distribution and then samples 
the classifiers from it. The evaluation emphasizes the effec-
tiveness of both optimization schemes in mitigating data 
heterogeneity challenges.

Lin et al. designed a consensus mechanism to mitigate 
model divergence in Device to Device (D2D) communica-
tion within a cluster. Devices (UAV clients) can system-
atically share their model parameters with others in their 
neighborhood to form a distributed consensus among 
each cluster of edge devices. Only one device from the 

Fig. 5   The learning procedure of the wireless HSFL algorithm [21]
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cluster needs to upload the cluster parameter model to 
the server (UAV leader) during global aggregation, as 
opposed to the conventional FL architecture where most 
of the devices are required to upload their local models. 
They effectively improve performance in the presence of 
statistical heterogeneity [25].

Wang et al. proposed a comprehensive framework for 
efficient ML model training using UAV swarms in the 
context of geo-distributed device clusters. Three types 
of UAVs are considered within a swarm: leaders, work-
ers, and coordinators. Leaders manage UAVs, workers 
conduct ML model training, and coordinators facilitate 
data relaying between IoT devices and worker UAVs. 
They designed a novel methodology called Hierarchical 
Nested Personalized Federated Learning (HN-PFL), which 
exploits meta-gradient that captures data commonalities 
across the disconnected device clusters and yield personal-
ized local models [38]. It introduces a two-layer hierarchi-
cal structure, involving swarm-level (local) aggregations 
within UAV swarms and global-level aggregations facili-
tated by access points (APs) or the core network. Zhong 
et al. also employed hierarchical over-the-air aggregation, 
utilizing a UAV as a Parameter Server (UAV-PS) (UAV 
leader) for collaborative ML training across widely dis-
tributed devices. The UAV-PS flies across its large service 
area to serve more devices. After the UAV-PS completes 
one round, it further aggregates the received partially 
aggregated local gradients to obtain a noisy version of the 
desired global gradient for global model updating [39]. 
Moreover, the researchers proposed a method to fine-tune 
the UAV’s flight path and the way data is aggregated, 
aiming to achieve the best possible model performance 
as measured by the Mean Squared Error (MSE). They 
employed a specific algorithmic approach, combining 
Alternating Optimization (AO) and Successive Convex 
Approximation (SCA), to efficiently solve this complex 
optimization problem.

Ruby et al. introduced a two-tier FL network where 
IoT devices serve as core data holders, low altitude aerial 
platforms (UAVs) act as mid-tier model aggregators, and 
high-altitude UAVs function as the top-tier model aggre-
gator [32]. The study focuses on addressing the energy-
efficient computation and communication resource allo-
cation challenge. Key contributions include adopting 
dual decomposition techniques to solve computation and 
communication resource allocation problems, proposing 
client-edge assignment schemes considering both energy 
consumption and client importance, and conducting exten-
sive simulations to validate the effectiveness of the pro-
posed scheme. The results emphasize the importance of 
considering not only energy consumption but also data 
distribution in client-edge assignments in two-tier hierar-
chical FL networks.

5.1.4 � Aggregation algorithm

Aggregation in non-IID data involves combining locally 
trained models from different devices to create a global 
model. This process must be carefully designed to address 
the disparities in data characteristics among devices. A com-
mon aggregation technique in FL is where models from all 
devices contribute equally to the global model. While sim-
ple, FedAVG may not be optimal for non-IID scenarios. 
Wang et al. proposed a FedAVG algorithm for non-IID, 
named AGI-fedavg [44]. AGI-fedavg enhances the FedAvg 
algorithm by incorporating the data characteristics of each 
device. In each iteration of the FL process after local training 
on devices, each device returns the locally updated model 
weights and the data characteristics owned by each device 
to the server (i.e., data length, label). As each device returns 
its model parameters and labels, node eigenvalues are cal-
culated based on the FedAvg algorithm during the weight 
computation. Finally, the calculated node eigenvalue and 
global weight are calculated, and the weight value is sent 
back to the device according to the corresponding label of 
each device for the next round of iteration. This algorithm 
allows the server to consider not only the model parameters 
but also contextual information about the data, enhancing 
the FL process in the presence of non-IID data [44].

A new aggregation algorithm named FedBA, introduced 
by Li et al., addresses the non-IID issue in a UAV-assisted 
FL framework. The FedBA algorithm incorporates a Euclid-
ean distance function to evaluate the difference between two 
models: the global model from the previous communication 
round and each local device’s model. The resulting values, 
after normalization, are then used to calculate aggregation 
weights for obtaining the global model for the new round. 
This algorithm ensures that each device’s model contributes 
to the global model based on its dissimilarity [35].

Yao and Cao used the FedAvg-Adam algorithm for aggre-
gation and proposed an enhanced Convolutional Neural Net-
work (CNN) by incorporating an additional batch normaliza-
tion (BN) layer resulting a faster convergence speed in the 
presence of non-IID data [30].

Puppala et  al. proposed an FL-based architecture to 
address the challenge of detecting contraband in X-ray 
images used for airport luggage security while prioritizing 
user privacy [45]. They focus on the airport IoT environ-
ment and employ the FedAvg algorithm adapting it to suit 
the unique characteristics of the airport setting. The FedAvg 
algorithm is found to be robust against non-IID data, reduc-
ing the number of communication links needed for training 
deep networks on decentralized data.

Amit and Mohan presented an updated version of Fed-
Avg, addressing dataset diversity using transfer learning 
and dynamic weight allocation  [41]. Transfer learning 
involves using a pre-trained model and fine-tuning its 
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weights with incremental adjustments to the learning rate 
in the new model. This method helps to extract the fea-
tures through domain adaptation at higher layers. Khullar 
and Singh used incremental learning to the continuous 
improvement of the model’s performance over time as it 
receives new data [42].

Two approaches, FedEx-Sync and FedEx-Async, are 
proposed and evaluated by Bian et al. [47]. FedEx-Sync 
adopts a synchronous learning approach, where all devices 
synchronize their learning rounds, the waiting time allows 
all devices to align their learning rounds, contributing to 
a synchronous update of the global model. On the other 
hand, FedEx-Async follows an asynchronous approach, 
allowing devices to initiate new rounds immediately and 
update the global model without predefined waiting peri-
ods. The performance comparison indicates that FedEx-
Sync’s performance is comparable to FedEx-Async when 
employing the Dirichlet distribution method, while FedEx-
Sync outperform FedEx-Async under the simulation of a 
geographically-dependent distribution. Li et al. proposed 
an opportunistic and proactive transmission scheme to 
address the challenge of asynchronous model updates in 
FL [19]. In this scheme, each device is allowed to upload 
intermediate model updates to the server opportunistically, 
taking into account the wireless channel conditions. This 
scheme is advantageous in the non-IID context since it 
penalizes the local model from overfitting the biased local 
dataset.

Other authors look at how to best select devices for 
aggregation. They use algorithms to pick devices that 
improve the global model performance when there is 
diversity in the data. Zhang et al. proposed the FedFreq 
algorithm. They observed that the parameter distribu-
tion of the global model will be biased towards devices 
that often participate in FL, which is not friendly to the 
robustness of the global model. Therefore, their insight is 
to reduce the impact of devices used with high training 
frequency on the global model to improve the robustness 
of the model [24]. Cheriguene et al. used the Structural 
Similarity Index Measure (SSIM) to compute the dissimi-
larity of data between clients. SSIM is made up of three 
components, namely the visual impact of changes in image 
brightness, contrast, and any remaining defects, together 
known as structural alterations. The selection process in 
the study [36] prioritizes devices with the highest SSIM 
scores for participation in the FL round due to their per-
ceived dissimilarity in data. Deng et al. proposed an enter-
prise-oriented framework to find FL devices with similar 
data resources. The authors in this study [31] employed 
a domain adaptation method within the context of trans-
fer learning. This method was utilized to extract domain-
invariant features, mitigating the impact of data differences 
among FL devices.

5.1.5 � Optimization algorithms

Mashhadi et al. proposed a trajectory optimization algorithm 
for drones based on collaborative training between intelli-
gent wireless devices and drones. The drone is intercon-
nected with ground-distributed devices and shares neural 
network parameters. Ground-intelligent devices collect data 
locally and train the network, then transmit and aggregate 
parameters with drones, ultimately achieving convergence. 
The optimization considers various factors, such as conver-
gence rate, communication errors, sensor noise levels, and 
the characteristics of heterogeneous local datasets. Experi-
mental results across different datasets scenarios (IID and 
Non-IID) demonstrate the algorithm’s higher accuracy [33].

The Yao and Sun investigated the CPU frequency opti-
mization problem in an Internet of Drones (IoD) network. 
The goal was to minimize the energy consumption of all 
the drones during the FL training process while satisfying 
the latency requirement of FL training time. The study [37] 
introduces an algorithm with polynomial time complexity to 
determine the optimal solution. The evaluation indicates that 
the proposed algorithm consumes less energy when dealing 
with non-IID data compared to a baseline algorithm. This 
is beneficial because, in scenarios with non-IID data, the 
local training times of different drones vary significantly. 
Consequently, the FL process is more likely to be affected 
by the slowest drone, which becomes the bottleneck in the 
non-IID case.

Donevski et al. proposed an FL approach to enhance the 
performance of autonomous road vehicles using a Drone 
Traffic Monitor (DTM). The primary focus in this study [27] 
is on quickly learning a specific critical object (CO) class, 
considering non-IID data across devices with varying com-
putational capabilities. The proposed solution involves 
dynamic resource allocation based on each device’s contri-
bution and incorporates heuristic measures such as maxi-
mizing or equalizing epochs computed across learners. The 
experiments utilize the FedProx FL algorithm in computer-
vision tasks, demonstrating the effectiveness of the solu-
tion in improving system accuracy and rapidly learning the 
underrepresented CO class.

5.1.6 � Federated Learning Architecture

A novel joint FL framework is introduced by Yu et al., 
addressing the challenges of handling hybrid vertically and 
horizontally partitioned data. Vertical FL involves differ-
ent features for the same samples distributed across devices, 
whereas horizontal FL involves the same features but with 
different samples of data. The proposed framework allows 
cooperative training between the server and devices, where 
local models are trained independently and then aggre-
gated to form a global model. The experimental results 
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demonstrate that this joint FL framework achieves rapid 
convergence [43].

Qu et  al. proposed a decentralized FL architecture 
for UAV networks (DFL-UN) in which each UAV client 
engages in both, local model training and aggregation of 
models from neighboring UAV clients. This eliminates the 
need for a server for global model aggregation. The DFL-
UN demonstrates effectiveness in achieving comparable 
learning performance with reduced training latency in the 
presence of non-IID data [2].

The Liu et al. presented a framework called Intermittent 
FL designed to capture the realistic challenges posed by 
intermittent communication outages in cellular-connected 
UAV networks. The authors [28] evaluate the impact of com-
munication outages on the learning accuracy, considering 
scenarios with both IID and non-IID datasets.

He et al. introduced a collaborative intrusion detection 
algorithm, utilizing a conditional generative adversarial net 
(CGAN) to tackle the issue of small samples and data imbal-
ance. They apply LSTM networks in the generator and dis-
criminator of CGAN to retain the contextual information for 
a long time and to portray small variations between normal 
and attack data. The evaluation demonstrates the efficiency 
of the algorithm in addressing the dataset imbalance [34].

5.2 � Client–server communication

This section categorizes how UAV clients exchange updated 
parameters during the aggregation step, distinguishing 
between synchronous and asynchronous communication 
[64]. In synchronous aggregation, model aggregation occurs 
only after all UAV client updates have reached the UAV 
leader. This ensures that all UAV clients synchronize their 
progress before the aggregation step. On the other hand, 
the primary goal of asynchronous aggregation is to acceler-
ate the training process. In asynchronous aggregation, the 
UAV leader aggregates the updated parameters as soon as 
it receives local updates from each UAV client. This allows 
each UAV client to train independently without waiting for 
others to complete their updates. In practical applications, 
selecting the appropriate type of communication UAV client 
is crucial since it has a significant impact on the efficiency 
of the FL architecture.

A review of studies on FL reveals that a substantial por-
tion of the study has focused on using the synchronized type 
of exchange model parameters among UAV clients. How-
ever, several studies have chosen asynchronous communica-
tion, which offers distinct advantages in certain scenarios. 
The study by the authors of  [19] focuses on mitigating 
staleness in the global model resulting from asynchronous 
aggregation. This issue becomes particularly pronounced 
in scenarios where a UAV faces dynamic wireless trans-
mission challenges. The study of Bian et al. employs both 

synchronous and asynchronous methods, depending on the 
situation; if a UAV client with a shorter processing time 
needs to wait for one with a longer processing time, asyn-
chronous communication is preferred, and vice versa. Simi-
larly, Donevski et al. supports the use of asynchronous com-
munication to enhance learning efficiency in heterogeneous 
networks with diverse computational capacities and limited 
resources. Additionally, the study of Qu et al. designs the 
training process to be asynchronous and fully distributed 
across multiple UAVs, highlighting the highly dynamic and 
potentially unstable nature of UAV networks.

5.3 � Statistical heterogeneity in federated learning

This analysis delves into the various methodologies that 
confront the challenges posed by statistical heterogeneity 
within federated learning frameworks. Statistical hetero-
geneity, characterized by the diverse distributions of data 
across client devices, can profoundly affect model training 
and overall predictive performance.

5.3.1 � Client clustering

By grouping clients that exhibit similar data distributions, 
client clustering methods are designed to tackle the chal-
lenges posed by statistical heterogeneity in federated learn-
ing environments. These methods ensure that the training 
process becomes more streamlined and effective. To deter-
mine the similarity between clients, various approaches uti-
lize specific metrics, such as cosine similarity or Euclidean 
distance, which are calculated based on model updates or 
gradient vectors. This methodology is particularly advanta-
geous as it directly mitigates the issue of statistical hetero-
geneity, preventing clients with fundamentally different data 
distributions from undermining each other’s model updates 
and overall performance.

A prime example of this approach is FedBA [35], which 
specifically addresses non-IID data in UAV networks. 
FedBA leverages Bayesian aggregation techniques to iden-
tify and group UAVs that share similar data characteristics. 
By doing so, it forms more homogeneous sub-federations, 
allowing these clusters to collaborate more effectively in 
training, ultimately leading to enhanced model performance 
across the network.

5.3.2 � Hierarchical federated learning

These methodologies leverage multi-tiered architectures 
specifically designed to manage heterogeneity in data 
sources and processing. By implementing intermediary 
aggregation layers, the approach effectively mitigates the 
challenges posed by diverse local data characteristics. This 
design allows for the development of specialized sub-models 
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tailored to different hierarchical levels, thereby facilitating 
partial personalization while ensuring that global knowledge 
is still shared across the system.

In terms of architectural design, the system typically com-
prises three distinct tiers. Lower-tier aggregations focus on 
local aggregations among similar devices, optimizing data 
processing by grouping together devices that exhibit compa-
rable characteristics or data patterns. In middle-tier aggrega-
tions, data is aggregated at edge servers or UAVs. This tier 
acts as a critical bridge, enabling efficient data processing 
closer to the source and reducing latency, all while managing 
the complexity of integrating various data streams. Upper-
tier Aggregation involves gathering data at a central server, 
which synthesizes information from the lower and middle 
tiers. This tier consolidates comprehensive insights, enabling 
large-scale data analysis and decision-making that supports 
a broader application of the shared knowledge.

An illustrative example of this approach can be seen in a 
hierarchical nested method, which assigns UAVs the respon-
sibility of coordinating training among ground devices that 
exhibit comparable characteristics [38]. This structure fos-
ters a multi-level personalization strategy that effectively 
addresses the issue of heterogeneity at each tier of the 
network.

Another pertinent example is an edge-aided framework 
where edge nodes function as intermediary facilitators 
between clients and the central server [5]. Clients that pos-
sess similar data distributions are connected to the same 
edge node, which performs localized aggregations to mit-
igate the effects of data heterogeneity. The central server 
subsequently aggregates these pre-processed and smoothed 
models derived from the edge nodes, thus enhancing the 
overall efficiency and effectiveness of the data processing 
pipeline.

5.3.3 � Hybrid and split learning

The hybrid or split learning approach optimizes data pri-
vacy and computational efficiency by partitioning the neu-
ral network into distinct segments. Initially, early layers are 
processed on client devices, ensuring that raw data remains 
on the device. Only the intermediate feature representations-
outputs from these layers-are sent to a central server. At the 
server, the remaining layers of the neural network are com-
puted using these representations, which allows for model 
training without accessing sensitive data. Federated aggre-
gation techniques are then applied to merge model updates 
from various clients, effectively integrating knowledge while 
maintaining privacy and security in the learning process.

Split learning methods decrease communication 
demands, which is crucial when statistical variation 
would otherwise necessitate additional communication 
rounds for convergence. By reducing the dimensionality 

of transmitted data-specifically, sending relevant features 
instead of complete gradients, statistical heterogeneity 
can be effectively tackled across datasets. This approach 
streamlines communication and enhances the clarity of 
shared information. Standardizing intermediate represen-
tations also normalizes differences in data distributions, 
reducing heterogeneity and improving model consistency. 
Furthermore, enabling the server to perform complex 
computations on these standardized features optimizes 
resource use, leading to more efficient and accurate model 
training.

The split learning-assisted multi-UAV system for 
image classification utilizes feature extraction on UAVs, 
followed by processing at the server [29]. This approach 
helps standardize heterogeneous image data collected from 
various environments.

5.3.4 � Specialized aggregation techniques

These methodologies enhance how client updates are 
evaluated and integrated. Instead of simple averaging 
of model updates, they utilize different functionalities. 
Adaptive Weighting Schemes adjust the influence of cli-
ent updates based on the characteristics of their data, 
considering factors like volume and quality. Tailored loss 
functions address variations in data distributions, improv-
ing the model’s ability to learn from diverse datasets and 
reducing the impact of unbalanced data. Regularization 
Techniques introduce constraints that prevent overfitting 
to specific data distributions, promoting generalization and 
robustness across varied datasets. In combination, these 
approaches lead to a more effective and resilient learning 
framework in distributed environments.

For instance, AGI-Fedavg addresses data heterogeneity 
in federated learning through a targeted approach [44]. It 
starts by evaluating client contributions based on quality 
rather than merely data volume, ensuring that the most 
relevant data influences the model effectively. Addition-
ally, AGI-Fedavg adjusts aggregation weights according 
to specific performance metrics, prioritizing contributions 
from clients that enhance overall model performance.

Further, a semi-supervised approach by Zhang et al. 
uses unlabeled data to improve robustness across hetero-
geneous drone-captured images. The approach utilized 
advanced self-supervised learning techniques to extract 
generalizable features that perform well across diverse 
data distributions. It also employed consistency regulari-
zation to ensure stable model predictions by comparing 
labeled and unlabeled samples, enhancing the robustness 
and adaptability of the learning framework.
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5.3.5 � Energy and resource optimization

These methodologies address both statistical and system 
heterogeneity while optimizing resource allocation. This 
involves selecting clients that enhance model diversity 
and maintain resource efficiency by evaluating their 
unique data contributions. Communication is adjusted 
based on the importance of client data and their device 
battery levels, prioritizing critical updates to conserve 
energy and bandwidth. By analyzing data characteristics, 
adaptive compression is applied, balancing bandwidth 
usage with the preservation of essential information for 
effective model training.

Liang et  al. introduce an energy-aware scheduling 
framework for IoT applications that formalizes client 
selection as a multi-objective optimization problem. This 
approach effectively accounts for data heterogeneity by 
recognizing the varying quality and types of data from 
different IoT devices. Additionally, it incorporates energy 
constraints to ensure the operational longevity of devices. 
Advanced reinforcement learning techniques enable the 
system to adaptively balance model quality and energy 
consumption, dynamically refining its strategies based 
on real-time feedback to optimize scheduling decisions.

6 � Applications

This section delves into the diverse use cases where UAVs, 
coupled with FL, play a pivotal role in enhancing efficiency, 
accuracy, and privacy, in the presence of non-IID data.

6.1 � Use cases

This section delves into the diverse use cases where UAVs, 
coupled with FL, play a pivotal role in enhancing efficiency, 
accuracy, and privacy, particularly in scenarios involving 
non-IID data. As shown in Table 3, we have categorized 
the use cases derived from the included studies into general 
categories. These categories are not mutually exclusive but 
have been outlined based on the primary objectives or targets 
of each use case. This classification aids in gaining a clearer 
understanding of the varied roles UAVs play in different 
applications, especially when integrated with FL. They are 
as follows:

Surveillance
Focuses on continuous observation and monitoring, 

encompassing a variety of applications. This includes 
employing UAVs as aerial users in military contexts, where 
they fly around target areas to collect data and support 
military applications through wireless networks [19]. In 
the context of distributed surveillance in smart cities, mul-
tiple UAVs are deployed throughout both urban and rural 

Table 3   Overview of UAV use cases utilizing FL to simulate non-IID data

Use cases References

Surveillance Military surveillance [19]
Distributed surveillance in smart cities [38]
Airport surveillance activities [41]
Traffic monitoring [34]

Collaborative learning UAVs collaboratively train ML model over a specific area. [20]
Various firms’ UAVs capture images at low altitudes from diverse locations. [35]
Serve devices distributed in a relatively large area [39]
Smart sensing in remote areas with no communication infrastructure [47, 65]

Environmental monitoring Fire tracking and flood monitoring [21]
Disaster image classification [42]
UAVs provide timely warnings for critical objects affecting autonomous vehicles. [27]

Recognition and classification tasks Image recognition [22, 24, 33]
Identify specific objects such as airports, factors and parking lots [29]
Exploration tasks, terrain discrimination and classification [30]

Inspection tasks Using UAVs to realize line patrol in multiple areas [44]
Using UAV to detect power grid abrasion [46]

Security Automated detection methods to check luggage for dangerous items in airport [45]
Detect the type/model of the UAV using the transmitted RF signals [26]

Manufacturing industry Planing machining parameters for aircraft structural parts [31]
Production Agricultural production and farming [43]
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areas gathering data from an array of sensors and cameras. 
Another significant use case is airport surveillance [41] 
which utilizes a range of remote sensing technologies 
including security cameras, UAVs with onboard cameras, 
and specialized remote sensing cameras. Additionally, this 
surveillance category extends to traffic monitoring [34], 
showcasing the broad utility of UAVs in various surveil-
lance scenarios.

Collaborative learning
Involves UAVs working together to train ML models over 

specific locations. Examples include UAVs from various 
firms capturing images at low altitudes in diverse locations, 
where each UAV employs its computational capabilities to 
perform local training on the data it has gathered [20, 35]. 
This approach also extends to serving devices distributed 
across relatively large areas [39] and enabling smart sensing 
in remote areas that lack communication infrastructure [47, 
65].

Environmental monitoring
UAVs are utilized to monitor natural phenomena and 

environmental conditions. This includes fire tracking and 
flood monitoring [21] where a group of UAVs fly over a 
target area under server control to collect image data with 
equipped cameras. Each UAV, carrying a powerful process-
ing unit (e.g., NVIDIA Jetson 10), observing partial informa-
tion of the target area. Another use case is in disaster image 
classification [42] which involves proposing and analyzing 
UAV-based disaster area image classification. Additionally, 
UAVs provide timely warnings for critical objects that could 
impact autonomous vehicles [27].

Recognition and classification tasks
Involve UAVs in image recognition and the identification 

of specific objects  [22, 24, 33]. UAVs are particularly use-
ful in detecting and classifying distinct objects or activities 
within complex environments such as airports and facto-
ries [29]. They also play a crucial role in exploration tasks, 
including terrain discrimination and classification [30].

Inspection tasks
Involve using UAVs for inspection tasks, such as patrol-

ling transmission lines [44]. Since these lines are often in 
remote or harsh environments, manual inspection poses 
safety risks and inefficiencies. UAVs offer a safer, more 
efficient alternative for these inspections. Another use case 
is using UAVs for the detection of power grid abrasions [46] 
where UAVs primarily focus on identifying faults in the 
power grid, facilitating timely repair and maintenance.

Security
Focuses on enhancing safety and security. One use case 

is the use of automated detection methods in airports for 
checking luggage for dangerous items [45]. This involves 

collaboration among three airports in different countries to 
develop a global model for identifying contraband, despite 
challenges in sharing X-ray data due to international sensi-
tivities. Another use case is using UAVs to detect the type/
model of other UAVs by analyzing their radio frequency 
(RF) signals [26]. This method combines passive and active 
techniques and aims to identify the manufacturer of the 
UAV and model based on unique, custom-designed RF 
waveforms.

Manufacturing industry
UAVs are applied for various tasks such as planning and 

machining. A specific example is the planning machining 
parameters for aircraft structural parts [31].

Agricultural production
UAVs play a role in agricultural activities and farm-

ing [43]. They are used to collect farm data including crop 
growth prediction and pest diagnosis. UAVs gather varied 
samples from different farm areas to provide comprehensive 
agricultural insights.

7 � Evaluation metrics

This examination focuses on the evaluation metrics that 
assess the performance and efficiency of FL within UAV 
applications, particularly in scenarios characterized by 
non-IID data distributions. These metrics are instrumental 
in measuring not only the accuracy and reliability of FL 
algorithms but also their scalability and resilience to hetero-
geneous data. By employing these metrics, the effectiveness 
of FL implementations can be evaluated in the face of the 
complexities presented by non-IID data environments.

7.1 � Accuracy‑based metrics

Accuracy is a critical evaluation metric across various 
domains, including FL applications for UAVs. It measures 
the proximity of predicted outcomes to their actual values, 
playing an essential role in assessing the effectiveness of ML 
models. A higher level of accuracy not only indicates more 
reliable and precise predictions but also emphasizes the 
overall dependability of a model in practical applications.

This metric has been extensively referenced in numerous 
studies, demonstrating its importance in evaluating the per-
formance of federated learning models. In particular, when 
applied to image classification tasks involving UAVs, accu-
racy serves as a clear benchmark for how effectively these 
models can interpret and analyze visual data captured from 
aerial viewpoints. The focus on accuracy in this setting is 
vital, as it directly influences the operational success and 
efficiency of UAV applications across various industries, 
from agriculture to surveillance [23, 24, 26, 30, 35, 44].10  https://​www.​nvidia.​com/​en-​us/​auton​omous-​machi​nes/​embed​ded-​

syste​ms/

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/


A systematic review of federated statistical heterogeneity in UAV applications﻿	

Furthermore, the Intersection over Union (IoU), as uti-
lized in [33], measures the accuracy of the overlap between 
predicted and actual image regions. Precision and Recall, as 
detailed in [34], measure the accuracy of positive predictions 
and the completeness of true positive detection, respectively. 
The F1 Score, which represents the harmonic mean of preci-
sion and recall, is employed in [31, 34]. Additionally, model 
performance is evaluated with a particular emphasis on loss 
functions during both training and testing phases, as noted 
in [38]. The Standard Mean Average Precision (mAP), 
used to assess the area under the precision-recall curve, is 
applied in [41].

7.2 � Communication & resource efficiency metrics

Communication overhead refers to the measurable effects 
of data transfers on both bandwidth consumption and 
transmission frequency within a system. In the context 
of FL applications designed for UAVs, various evaluation 
metrics are employed to thoroughly assess technical model 
performance. A primary focus is on enhancing communica-
tion efficiency, which seeks to minimize the amount of data 
exchanged between edge devices. Implementing effective 
strategies in this area can significantly reduce latency and 
improve the overall responsiveness of the system [19, 21].

In addition to communication efficiency, resource uti-
lization is another crucial metric that evaluates the effec-
tiveness with which edge devices deploy their resources 
during operation. This encompasses factors such as CPU 
usage, memory consumption, and energy efficiency, all of 
which are vital for the sustainable operation of UAVs. A 
comprehensive examination of this topic discusses various 
methodologies aimed at optimizing resource allocation in 
edge devices [42]. The goal is to strike a balance between 
performance and resource constraints while ensuring privacy 
and security are maintained.

Finally, energy efficiency is essential in optimizing UAV-
enabled FL systems. This involves implementing energy-
aware participant selection methods to identify devices 
based on their energy resources and computational abili-
ties, thereby enhancing system sustainability. Additionally, 
adopting energy-efficient strategies is crucial for minimizing 
energy consumption during model training and inference 
[37, 38].

7.3 � Convergence analysis

Studies commonly report accuracy alongside other metrics 
to provide a comprehensive understanding of the overall 
performance of the model. Convergence analysis is a criti-
cal aspect in evaluating the performance of FL models for 
UAV applications. It focuses on understanding the behavior 
of the ML model and performance as it iteratively refines 

its parameters through collaboration with distributed UAV 
clients. Convergence refers to the point at which the ML 
model reaches stability or achieves a desired level of per-
formance [35, 39]. A higher convergence rate indicates that 
the FL model approaches the optimal solution more rapidly 
during the training process.

Furthermore, training latency refers to the time it takes 
from starting the training of a machine learning model to 
receiving the results. It involves data preprocessing, model 
setup, and hardware performance. Factors such as model 
complexity and dataset size affect this delay, making it 
important to minimize for efficient real-time applications 
[2, 25].

8 � Open challenges and future directions

In this section, we discuss potential research directions and 
highlight unresolved issues associated with FL for UAV 
applications in the presence of statistical heterogeneity.

Use of realistic datasets: FL relies on training ML mod-
els across decentralized devices. In the context of UAV 
applications, the datasets used to train these models play 
a pivotal role in determining the models’ performance and 
applicability to real-world scenarios. However, many stud-
ies use non-realistic datasets for convenience and computa-
tional efficiency, which might not accurately represent the 
complexities and variations encountered by UAVs in actual 
operational environments. An example of this is using the 
MNIST [62] dataset to simulate FL in UAV applications [5]. 
Future efforts should focus on integrating realism data into 
the training process to ensure that the trained models are 
more robust, adaptable, and capable of addressing the chal-
lenges encountered in practical, real-world scenarios. This 
is crucial, as pointed in [24, 44], since the authors need to 
evaluate their algorithm in a real environment to demon-
strate its practical efficacy and adaptability.

Training data distributions: This aspect emphasizes 
the significance of simulating diverse data distributions 
during FL experiments for UAV applications. Each UAV 
client collects data with varying characteristics, features, 
labels, sizes, or a mix of these aspects. Notably, the dis-
cussed studies have mostly simulated label partitioning, 
often with distributions closely resembling IID data dis-
tributions (cf Table 2). However, there is a gap in explor-
ing non-IID distributions that better reflect the real-world 
applications. Future studies should focus on simulating 
various types of distributions to ensure a more accurate 
representation of the complexities encountered in UAV 
practical scenarios. It is critical to add more variability in 
the dataset, as noted in [41]. Using mixed-type distribu-
tions, which includes variations in features, labels, and 
sizes, is vital to enhance the realism of FL experiments 
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in UAV applications. Moreover, as pointed out in [44], 
it is suggested that incorporating additional UAV clients 
for training in future research would be more effective 
in simulating non-IID data in real-world environments. 
This suggest enables the global model to learn from a 
broader spectrum of real-world scenarios, which is crucial 
for applications requiring high accuracy and adaptability 
in varying conditions.

Catastrophic forgetting: FL methods included in this 
review are designed within the framework of static UAV 
application scenarios, where the training data are pre-
determined and assumed to remain fixed. This approach 
contrasts with the dynamic nature of real-world appli-
cations, where new data are generated regularly and its 
distribution can change significantly. A major challenge 
arises when an ML model is confronted with new data 
that significantly differs from the data previously used 
for training, exposing UAV clients to the problem of cata-
strophic forgetting [66]. Catastrophic forgetting is a phe-
nomenon in ML where a model forgets previously learned 
information upon learning new data. This issue is signifi-
cant in scenarios where models are continuously trained 
on new data streams. The model, while adapting to the 
new information, tends to completely overwrite or lose 
the knowledge it had acquired from the older data. Con-
tinual learning [67] is employed in this context to help 
the ML model adapt to new data. This technique should 
be explored further in this domain, particularly in non-
IID data scenarios with new training data distributions. 
Therefore, it is crucial for researchers to develop solutions 
that can better adapt to dynamic real-world scenarios.

Limitation and future perspective: A key limitation 
identified in the systematic review is the need for FL 
frameworks to adapt to non-IID distributions of training 
data and the dynamic nature of UAV application envi-
ronments [27]. This adaptation is essential for ensuring 
the effectiveness of FL in real-world UAV scenarios. The 
authors’ future direction [24] involves enhancing their 
proposed Semi-Supervised Federated Learning (SSFL) 
algorithm to maximize the use of unlabeled data and fur-
ther develop the underlying theory, enabling more effec-
tive applications in real-world scenarios. Additionally, 
other authors [41] suggest that the FL algorithm they have 
proposed could be further evaluated in various applica-
tions, such as image segmentation and image enhance-
ment tasks.

The integration of multi-model [68] support within the 
FL training process, represents a significant advancement. 
This development would be enabled by separating the 

global model aggregation from local training processes. 
Such a separation would grant UAV clients the flexibil-
ity to implement various learning algorithms as per their 
specific needs.

9 � Summary

Federated Learning (FL) presents itself as a promising 
solution for training Machine Learning (ML) models 
with large and diverse datasets, without compromising 
information confidentiality. This characteristic is signifi-
cant for UAV applications, where UAV data is inherently 
sensitive to privacy and often cannot be easily shared. In 
this review, we emphasize a critical challenge in FL in 
the context of UAV applications, specifically focusing on 
non-IID (Non-Independently and Identically Distributed) 
distributions of data. We surveyed and classified 31 studies 
published between 2016 and October of 2023 to address 
five research questions. We introduced the challenges 
posed by non-IID data in UAV applications, emphasizing 
their impact on ML model performance, including learn-
ing accuracy, stability of the FL algorithm, convergence 
behavior, and communication efficiency. We delved into 
the training data distributions, focusing on quantity, label, 
feature, and mixed-type distributions. We noted that label 
skew was a common distribution type used. The most com-
monly unrealistic dataset employed is MNIST, which did 
not effectively simulate real-world UAV data, given the 
differences in the data domain, size, and complexity.

We systematically reviewed state-of-the-art FL frame-
works designed to address non-IID data, including tech-
niques like data sharing, split learning, clustering, FL 
architecture, aggregation algorithm and optimization 
algorithms.

Additionally, we discussed and highlighted use cases of 
FL on non-IID data in areas like surveillance, collabora-
tive learning, environmental monitoring, recognition and 
classification tasks, inspection, security, manufacturing, 
and production. We shed light on the evaluation metrics 
employed, accuracy, and convergence rate, highlighting 
their significance in this field.

The comprehensive systematic literature review pre-
sented in this study is expected to guide researchers in 
understanding the state-of-the-art and inform future stud-
ies on FL with non-IID data.

Appendix: Summarized table of federated 
learning studies in UAV applications

See Tables 4 and 5.
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Table 4   Federated learning studies for UAV applications

FL framework Contribution

OPT-HSFL [19] Aims to mitigate the impact of dynamic wireless conditions on model transmission
HN-PFL [38] Exploits meta-gradient based learning across disconnected device clusters and yield personalized local 

models
clustered decentralized FL [20] Divides the UAV network into clusters in iterative way for local model aggregation while ensuring con-

nectivity among Cluster head UAVs
HSFL algorithm [21] Encompasses the parallel model training mechanism of FL and the model splitting structure of Split 

Learning
[33] Optimize the drone trajectory to achieve the fastest learning and the best final performance for the 

trained NN model
CGAN [34] Collaborative intrusion detection algorithm based on CGAN-LSTM with blockchain empowered dis-

tributed FL
FedBA [35] Alleviate the problem of data heterogeneity in UAV-assisted FL
C-FLA [23] Two optimization strategies for handling multiple classifiers, which effectively address the challenges 

posed by client heterogeneity
OA-FL system [39] A system which using UAVs as a server to aggregate local gradients hierarchically in large areas, 

addressing the challenges of communication and straggler issues
[42] Disaster image classification in the context of the Internet of UAVs
Hierarchical FL algorithm [5] A high-performing FL scheme for the edge-aided UAV network that works well in real-world scenarios 

with non-IID distributions (i.e., highly skewed feature and label distributions)
SSFL Framework [24] FL framework for enhanced data privacy, developing a robust semi-supervised FL system, proposing a 

novel model aggregation rule to handle statistical heterogeneity
TT-HF [25] Efficiency of FL in D2D-enabled wireless networks by augmenting global aggregations with coopera-

tive consensus procedure among device clusters
DEEPS [36] Participant selection scheme that prioritizes participants with high data diversity and sufficient battery 

capacity to handle local training
[29] Split Learning assisted multi UAV system for image classification tasks in area exploration scenarios
AGI-Fedavg [44] An FL algorithm for power grid data, addressing privacy and non-IID challenges
[45] FL-based architecture to detect contraband in x-ray baggage security images while maintaining user 

privacy
[30] Land classification method based on FL which uses Fedavg-Adam algorithm and introduce an improved 

CNN
[46] Adaptive method according to the idea of dynamic adjustment of static parameters such as learning rate 

and gradient
[37] CPU frequency optimization in an Internet of Drone network to reduce energy use during FL training 

while meeting latency requirements
An enterprise-oriented framework [31] Framework to find FL participants with similar data resources while minimizing the disclosure of 

enterprise information
FedEx [47] FL framework use in situations where direct communication between the server and clients is not pos-

sible
[32] Framework and resource allocation strategies for energy-efficient FL in a two-tier network with IoT 

devices, UAV aggregators, and consideration of non-IID data
HSFL [22] Improves communication efficiency and learning accuracy under non-IID data distributions along with 

a MAB-based user selection scheme
Joint federated learning [43] FL framework for Edge-assisted Internet of Agriculture Things, coupled with a resource-constrained 

device scheduling algorithm, to enhance convergence, communication efficiency, and model accuracy
[41] FL-based data management framework for airport object representations that enhances security and 

privacy by preserving data on the client side while achieving better detection accuracy and communi-
cation efficiency in object detection tasks

[26] Deep learning method to detect the type/model of the UAV using the transmitted RF signals
[27] FL in the context of autonomous traffic monitoring with a drone orchestrator and ground-based learners 

to enhance learning in a dynamic and non-IID data environment
DFL-UN [2] FL architecture called Decentralized FL for UAV Networks, which enables FL within UAV networks 

without a central server
[28] An intermittent FL model that accounts for uplink communication outages which develops a tractable 

approach to analyze and characterize the uplink outage probability
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Table 4   (continued)

FL framework Contribution

H-Home [65] Framework that combines FL and RL to address offload management challenges in Flying Ad-Hoc 
Networks

Table 5   List of abbreviations and synonyms used in our systematic review

Abbreviation Full label Synonym(s)

ML Machine learning
CNN Convolutional neural network
DDRNet Deep dual-resolution network
FCNN Fully connected neural network
RNN Recurrent neural network
RF Random forest
DT Decision tree
SVM Support vector machine
GAN-LSTM Generative adversarial network with long short-term memory
CGAN-LSTM Conditional generative adversarial network with long short-term 

memory
FL-CGAN-LSTM Federated learning conditional generative adversarial network with 

long short-term memory
VGG16 Visual geometry group 16
ResNet152 Residual network 152
Inception ResNet Inception residual network
Xception Extreme inception
ResNet-18 Residual network 18
R-CNN Region-based convolutional neural network
YOLOV3 You only look once version 3
YOLOv7 You only look once version 7
SSD Single shot MultiBox detector
CNN with BN Convolutional neural network with batch normalization
RL Reinforcement learning
ResNet-9 Residual network 9
AlexNet Alex neural network
FL Federated learning
IID Independently and identically distributed
Non-IID Non-independently and identically distributed Statistical heterogeneity
IOT devices Internet of thing devices Ground-intelligent devices
UAV leader Unmanned aerial vehicle leader Base station (BS), server, unmanned aerial vehicle 

Parameter server (UAV_PS), Cluster-head (CH) 
UAV

UAV client Unmanned aerial vehicle client Device, drone
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