elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Synthetic Aperture Radar SLC data compression using Mean-Scale Hyperprior architecture

Leonard, Cedric (2024) Synthetic Aperture Radar SLC data compression using Mean-Scale Hyperprior architecture. In: EGU General Assembly 2024. European Space Agency. EGU 2024, 2024-04-14 - 2024-04-19, Vienna, Austria. doi: 10.5194/egusphere-egu24-5021.

[img] PDF
735kB

Offizielle URL: https://meetingorganizer.copernicus.org/EGU24/EGU24-5021.html

Kurzfassung

Synthetic Aperture Radar (SAR) images are becoming increasingly important in a variety of remote sensing applications, leading to new missions with higher resolution and coverage, ultimately resulting in an ever-increasing volume of data. This burden on SAR data storage and transmission has established a serious interest in developing compression methods that can obtain higher compression ratios, while keeping complex SAR image quality to an acceptable level. In computer vision, neural network-based RGB image compression has exceeded traditional methods such as JPEG, JPEG2000 or BPG. The Mean-Scale Hyperprior network [1] is an auto-encoder based architecture exploiting the probabilistic structure in the latents to improve compression performance. Auto-encoders are architectures particularly suited for the inherent rate-distortion trade-off of data compression. They also offer an intuitive solution to the on-board image compression problem, as demonstrate for the Phi-Sat-2 mission [2]. In this work, we explore efficient SAR image compression, in this regard, we adapt the Mean-Scale Hyperprior architecture to SAR data. We use Sentinel-1 IW mode VV polarization SLC images to build a dataset of diverse scenes: urban areas, forests, mountains and water bodies in dry as well as snow/ice conditions. The central idea being to create an open-source and general dataset of SAR images, in order to compare the performance of the studied architecture with traditional codecs and baseline models, such as the work in [3]. We will experiment with latent sizes, patch size as well as different SAR data representations for the network.

elib-URL des Eintrags:https://elib.dlr.de/210216/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Synthetic Aperture Radar SLC data compression using Mean-Scale Hyperprior architecture
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Leonard, Cedriccedric.leonard (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 April 2024
Erschienen in:EGU General Assembly 2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu24-5021
Verlag:European Space Agency
Status:veröffentlicht
Stichwörter:Earth Observation, Synthetic Aperture Radar, Data Compression, Deep Learning
Veranstaltungstitel:EGU 2024
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 April 2024
Veranstaltungsende:19 April 2024
Veranstalter :ESA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Leonard, Cedric
Hinterlegt am:16 Dez 2024 10:32
Letzte Änderung:16 Dez 2024 10:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.