Leonard, Cedric (2024) Synthetic Aperture Radar SLC data compression using Mean-Scale Hyperprior architecture. In: EGU General Assembly 2024. European Space Agency. EGU 2024, 2024-04-14 - 2024-04-19, Vienna, Austria. doi: 10.5194/egusphere-egu24-5021.
PDF
735kB |
Offizielle URL: https://meetingorganizer.copernicus.org/EGU24/EGU24-5021.html
Kurzfassung
Synthetic Aperture Radar (SAR) images are becoming increasingly important in a variety of remote sensing applications, leading to new missions with higher resolution and coverage, ultimately resulting in an ever-increasing volume of data. This burden on SAR data storage and transmission has established a serious interest in developing compression methods that can obtain higher compression ratios, while keeping complex SAR image quality to an acceptable level. In computer vision, neural network-based RGB image compression has exceeded traditional methods such as JPEG, JPEG2000 or BPG. The Mean-Scale Hyperprior network [1] is an auto-encoder based architecture exploiting the probabilistic structure in the latents to improve compression performance. Auto-encoders are architectures particularly suited for the inherent rate-distortion trade-off of data compression. They also offer an intuitive solution to the on-board image compression problem, as demonstrate for the Phi-Sat-2 mission [2]. In this work, we explore efficient SAR image compression, in this regard, we adapt the Mean-Scale Hyperprior architecture to SAR data. We use Sentinel-1 IW mode VV polarization SLC images to build a dataset of diverse scenes: urban areas, forests, mountains and water bodies in dry as well as snow/ice conditions. The central idea being to create an open-source and general dataset of SAR images, in order to compare the performance of the studied architecture with traditional codecs and baseline models, such as the work in [3]. We will experiment with latent sizes, patch size as well as different SAR data representations for the network.
elib-URL des Eintrags: | https://elib.dlr.de/210216/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||
Titel: | Synthetic Aperture Radar SLC data compression using Mean-Scale Hyperprior architecture | ||||||||
Autoren: |
| ||||||||
Datum: | 15 April 2024 | ||||||||
Erschienen in: | EGU General Assembly 2024 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
DOI: | 10.5194/egusphere-egu24-5021 | ||||||||
Verlag: | European Space Agency | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Earth Observation, Synthetic Aperture Radar, Data Compression, Deep Learning | ||||||||
Veranstaltungstitel: | EGU 2024 | ||||||||
Veranstaltungsort: | Vienna, Austria | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsbeginn: | 14 April 2024 | ||||||||
Veranstaltungsende: | 19 April 2024 | ||||||||
Veranstalter : | ESA | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Leonard, Cedric | ||||||||
Hinterlegt am: | 16 Dez 2024 10:32 | ||||||||
Letzte Änderung: | 16 Dez 2024 10:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags