elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automated Learning of Parameters for State and Error Classifiers in Plan-Based Robotic Task Execution

Dempel, Ina (2024) Automated Learning of Parameters for State and Error Classifiers in Plan-Based Robotic Task Execution. DLR-Interner Bericht. DLR-IB-RM-OP-2024-102. Masterarbeit. Technische Universität München. 61 S.

[img] PDF - Nur DLR-intern zugänglich
14MB

Kurzfassung

As robots become more autonomous, there is a number of issues that keep them from reaching their full potential. One of these problems is the ability to detect and react to possible failures. In order for a robot to handle failures adequately, it first needs to be able to detect deviations from the expected state of the environment and determine whether they are likely to lead to failure. While a framework for detection of and reaction to these kinds of deviations already exists, the parameters for deciding whether a reaction is necessary are specific to individual actions and need to be implemented manually, which is cumbersome. In order to enable reactive behavior for a wide range of actions, the parameters for failure detection should be obtained automatically. This thesis proposes a pipeline for automatic generation of classifiers for action effect prediction in integrated task and motion planning. With this pipeline, classifiers for individual actions are trained automatically and can then be used to detect failures at runtime. A modular design for the pipeline, which can be used with both data from real-world experiments and data generated using a physics simulation, is introduced. Different classifiers are trained and compared to identify which ones are suitable for the described use case. The data used for training is generated using a physics simulation. The performance of the classifiers and the pipeline on data from two different actions is examined and reported. With this, the capability of the pipeline to automatically train classifiers for different actions using data from a physics simulation is demonstrated. With the inclusion of proposals for future work to further generalize the individual pipeline modules, this thesis lays the groundwork for an end-to-end pipeline that can aid in improving reactivity in task and motion planning.

elib-URL des Eintrags:https://elib.dlr.de/210190/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Automated Learning of Parameters for State and Error Classifiers in Plan-Based Robotic Task Execution
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dempel, Inaina.dempel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Open Access:Nein
Seitenanzahl:61
Status:veröffentlicht
Stichwörter:Robotics, Failure Detection, Error Detection, Task and Motion Planning
Institution:Technische Universität München
Abteilung:School of Computation, Information and Technology — Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Autonomie und Fernprogrammierung
Hinterlegt von: Bauer, Adrian Simon
Hinterlegt am:10 Dez 2024 07:46
Letzte Änderung:10 Dez 2024 07:46

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.