Pitz, Johannes und Röstel, Lennart und Burschka, Darius und Sievers, Leon und Bäuml, Berthold (2024) Learning a Shape-Conditioned Agent for Purely Tactile In-Hand Manipulation of Various Objects. In: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024), 2024-10-14, Abu Dhabi, UAE.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Reorienting diverse objects with a multi-fingered hand is a challenging task. Current methods in robotic in-hand manipulation are either object-specific or require permanent supervision of the object state from visual sensors. This is far from human capabilities and from what is needed in real-world applications. In this work, we address this gap by training shape-conditioned agents to reorient diverse objects in hand, relying purely on tactile feedback (via torque and position measurements of the fingers' joints). To achieve this, we propose a learning framework that exploits shape information in a reinforcement learning policy and a learned state estimator. We find that representing 3D shapes by vectors from a fixed set of basis points to the shape's surface, transformed by its predicted 3D pose, is especially helpful for learning dexterous in-hand manipulation. In simulation and real-world experiments, we show the reorientation of many objects with high success rates, on par with state-of-the-art results obtained with specialized single-object agents. Moreover, we show generalization to novel objects, achieving success rates of approx. 90% even for non-convex shapes.
elib-URL des Eintrags: | https://elib.dlr.de/210167/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Learning a Shape-Conditioned Agent for Purely Tactile In-Hand Manipulation of Various Objects | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Erschienen in: | 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | in-hand manipulation, deep reinforcement learning, tactile state estimation | ||||||||||||||||||||||||
Veranstaltungstitel: | 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024) | ||||||||||||||||||||||||
Veranstaltungsort: | Abu Dhabi, UAE | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsdatum: | 14 Oktober 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||||||
Hinterlegt von: | Pitz, Johannes | ||||||||||||||||||||||||
Hinterlegt am: | 05 Dez 2024 22:35 | ||||||||||||||||||||||||
Letzte Änderung: | 05 Dez 2024 22:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags