elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Visual-Servoing based Mixture of Experts Fixture Learning

Kühnöl, Janosch (2024) Visual-Servoing based Mixture of Experts Fixture Learning. Masterarbeit, Technical University of Munich.

[img] PDF - Nur DLR-intern zugänglich
14MB

Kurzfassung

Haptic guidance plays an important role in the interaction between the user and the robot. It can be implemented in either teleoperation or hands-on devices. In both cases, haptic guidance assists the user in completing the task. Different types of guidance are required depending on the nature of the task. These are called Virtual Fixtures. For example, one Virtual Fixture often provides path guidance to lead the user to the workplace or between different workplaces. Also, forbidden regions for the robot could be defined. Vision-based guidance, such as Visual Servoing Fixtures, is necessary to adapt to environmental changes. The Visual Servoing Fixtures used in this work can even update the Virtual Fixture live. This Visual Servoing Fixture is based on a Mixture of Experts (MoE). This approach proposed by Mühlbauer et al. [1] mediates between several targets with different uncertainties. One problem with the Visual Servoing Fixtures is that several hyperparameters must be tuned for every use case. The tuning of these hyperparameters is a challenging task because the parameters influence each other, and the user needs to know the mathematics behind them. The goal of this Master’s Thesis is to estimate the hyperparameters for the Visual Servoing Fixtures using Learning from Demonstration (LfD). Finally to make adapting the Visual Servoing Fixtures to other tasks easier.

elib-URL des Eintrags:https://elib.dlr.de/210096/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Visual-Servoing based Mixture of Experts Fixture Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kühnöl, JanoschNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Open Access:Nein
Seitenanzahl:119
Status:veröffentlicht
Stichwörter:Virtual Fixtures, Learning from Demonstration, Robotics
Institution:Technical University of Munich
Abteilung:School of Engineering and Design
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Erklärbare Robotische KI
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Mühlbauer, Maximilian Sebastian
Hinterlegt am:07 Jan 2025 10:07
Letzte Änderung:07 Jan 2025 10:07

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.