elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Oil Spill Monitoring in the North Sea Based on Deep Learning Using SAR Imagery

Schnupfhagn, Christoph und Yang, Yi-Jie (2025) Oil Spill Monitoring in the North Sea Based on Deep Learning Using SAR Imagery. In: ESA Living Planet. ESA Living Planet Symposium, 2025-06-23 - 2025-06-27, Vienna, Austria.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://lps25.esa.int/programme/programme-session/?id=2202E931-2B49-4A3B-8D69-7C8591CB80EA&presentationId=F3CA9A06-CAE4-4B17-8BA7-1A0576A0DF34

Kurzfassung

Oil pollution in the North Sea is mainly caused by shipping activities and offshore oil production. The North Sea contains busy international shipping lanes through the English Channel and to the Baltic Sea. In addition, hundreds of offshore oil and gas platforms are scattered throughout the North Sea. Oil leaks and discharges from offshore platforms, pipelines and ships result in surface films that threaten sensitive marine and coastal ecosystems such as the Wadden Sea. Continuous satellite-based monitoring is therefore needed to detect accidental and deliberate oil spills in this large area, coordinate their mitigation and identify possible polluters. In this contribution, we present an oil spill monitoring system for the North Sea based on Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 satellite. For this, a diverse dataset with manually labeled SAR image patches including oil spills and typical other oceanic and atmospheric phenomena was generated. The labeling was supported by contextual information such as wind speed and the position of offshore platforms. This dataset was used to train a state-of-the-art deep learning based object detector. The detector was then validated with an additional dataset of labeled SAR images covering all seasons. Each detected oil spill is segmented to provide the actual extent of the polluted area. The oil spill monitoring system is designed for operational use. Therefore, the key metrics are the false negative and false discovery rates. By taking advantage of local image statistics, we show that the accuracy of the detector can be significantly improved. Starting from individual SAR scenes, the monitoring system automatically generates geocoded binary masks and relevant metadata of the detected oil spills. The method is optimized for speed and accuracy and can be adapted for upcoming SAR missions. With its potential for operational use, our oil spill monitoring system can serve as a basis for decision makers and early response to mitigate pollution.

elib-URL des Eintrags:https://elib.dlr.de/210031/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Oil Spill Monitoring in the North Sea Based on Deep Learning Using SAR Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schnupfhagn, Christophchristoph.schnupfhagn (at) dlr.dehttps://orcid.org/0009-0009-3660-9727187423370
Yang, Yi-JieYi-Jie.Yang (at) dlr.de / Research and Technology Centre Westcoast, Kiel University, Büsum, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:23 Juni 2025
Erschienen in:ESA Living Planet
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Oceanography, SAR, oil pollution, North Sea, near real-time oil spill detection, NRT, deep learning
Veranstaltungstitel:ESA Living Planet Symposium
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Juni 2025
Veranstaltungsende:27 Juni 2025
Veranstalter :ESA / DLR
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:22 Apr 2025 10:06
Letzte Änderung:07 Jul 2025 13:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.