Bicker, Julia und Schmieding, Rene und Meyer-Hermann, Michael und Kühn, Martin Joachim (2024) Hybrid metapopulation agent-based epidemiological models for efficient insight on the individual scale: a contribution to green computing. Infectious Disease Modelling. KeAi Communications Co.. ISSN 2468-2152. (eingereichter Beitrag)
PDF
- Preprintversion (eingereichte Entwurfsversion)
6MB |
Kurzfassung
Emerging infectious diseases and climate change are two of the major challenges in 21st century. Although over the past decades, highly-resolved mathematical models have contributed in understanding dynamics of infectious diseases and are of great aid when it comes to finding suitable intervention measures, they may need substantial computational effort and produce significant CO2 emissions. Two popular modeling approaches for mitigating infectious disease dynamics are agent-based and population-based models. Agent-based models (ABMs) offer a microscopic view and are thus able to capture heterogeneous human contact behavior and mobility patterns. However, insights on individual-level dynamics come with high computational effort that scales with the number of agents. On the other hand, population-based models using e.g. ordinary differential equations (ODEs) are computationally efficient even for large populations due to their complexity being independent of the population size. Yet, population-based models are restricted in their granularity as they assume a (to some extent) homogeneous and well-mixed population. To manage the trade-off between computational complexity and level of detail, we propose spatial- and temporal-hybrid models that use ABMs only in an area or time frame of interest. To account for relevant influences to disease dynamics, e.g., from outside, due to commuting activities, we use population-based models, only adding moderate computational costs. Our hybridization approach demonstrates significant reduction in computational effort by up to 98\% -- without losing the required depth in information in the focus frame. The hybrid models used in our numerical simulations are based on two recently proposed models, however, any suitable combination of ABM-ODE could be used, too. Concluding, hybrid epidemiological models can provide insights on the individual scale where necessary, using aggregated models where possible, thereby making a contribution to green computing.
elib-URL des Eintrags: | https://elib.dlr.de/209880/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Hybrid metapopulation agent-based epidemiological models for efficient insight on the individual scale: a contribution to green computing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | Infectious Disease Modelling | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Verlag: | KeAi Communications Co. | ||||||||||||||||||||
ISSN: | 2468-2152 | ||||||||||||||||||||
Status: | eingereichter Beitrag | ||||||||||||||||||||
Stichwörter: | Agent-based Modeling, Metapopulation Model, Hybrid Modeling, Computational Efficiency, Energy reduction, Infectious Disease Dynamics | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Softwaretechnologie | ||||||||||||||||||||
Hinterlegt von: | Bicker, Julia | ||||||||||||||||||||
Hinterlegt am: | 09 Dez 2024 14:26 | ||||||||||||||||||||
Letzte Änderung: | 09 Dez 2024 14:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags