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Abstract

Emerging infectious diseases and climate change are two of the major challenges in 21st century. Although over
the past decades, highly-resolved mathematical models have contributed in understanding dynamics of infectious
diseases and are of great aid when it comes to finding suitable intervention measures, they may need substantial com-
putational effort and produce significant CO2 emissions. Two popular modeling approaches for mitigating infectious
disease dynamics are agent-based and population-based models. Agent-based models (ABMs) offer a microscopic
view and are thus able to capture heterogeneous human contact behavior and mobility patterns. However, insights
on individual-level dynamics come with high computational effort that scales with the number of agents. On the
other hand, population-based models using e.g. ordinary differential equations (ODEs) are computationally efficient
even for large populations due to their complexity being independent of the population size. Yet, population-based
models are restricted in their granularity as they assume a (to some extent) homogeneous and well-mixed population.
To manage the trade-off between computational complexity and level of detail, we propose spatial- and temporal-
hybrid models that use ABMs only in an area or time frame of interest. To account for relevant influences to disease
dynamics, e.g., from outside, due to commuting activities, we use population-based models, only adding moderate
computational costs. Our hybridization approach demonstrates significant reduction in computational effort by up to
98% – without losing the required depth in information in the focus frame. The hybrid models used in our numerical
simulations are based on two recently proposed models, however, any suitable combination of ABM-EBM could be
used, too. Concluding, hybrid epidemiological models can provide insights on the individual scale where necessary,
using aggregated models where possible, thereby making a contribution to green computing.

Keywords: Agent-based Modeling, Metapopulation Model, Hybrid Modeling, Computational Efficiency, Energy
reduction, Infectious Disease Dynamics

1. Introduction

Two of the major 21st century’s challenges are accelerating climate change [1] and emerging infectious diseases
with an expected increase in frequency of epidemics and pandemics [2]. As these challenges are driven by the same
underlying causes, sets of proposed counteractions might go hand-in-hand [2, 3]. In order to assess counteractions
and support decision-makers, mathematical models are viable tools that have been used extensively in both domains.
Models can help to understand the situation at hand and to analyze potential future developments, which often cannot
be conducted in classical experiments. The recent COVID-19 pandemic has demonstrated the benefit of mathemat-
ical models to analyze ongoing infectious disease dynamics and to evaluate potential scenarios, see, e.g., [4, 5, 6].
Extensive testing strategies maintaining mobility as a social good, have, for instance, been studied in [7]. The set
of mathematical models to address epidemiological emergencies to provide guidance to decision makers is diverse.
It ranges from classical statistical models such as generalized regression models, through population-based [4, 8],
metapopulation [9, 10], and agent-based [11, 5, 12, 13, 14] models to machine and deep learning models [15, 16, 17].
Population-based models using sets of ordinary [4, 10] or integro-differential-equation-based models [8, 18] are well
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established methods that have been used by hundreds of work groups worldwide to analyze infectious disease dynam-
ics. Their advantages are the ease of analysis, their well-understood character and the low computational requirements
which do not depend on the number of individuals in the population but on the number of different subpopulations.
However, their insight on the individual-level dynamics or on (singular) stochastic effects is limited and they also fail
in the beginning of an outbreak when the number of infected is small. Agent- or individual-based models (ABMs or
IBMs), on the other hand, allow the stochastic simulation of individual behavior and reaction to diseases, in a social
and immunological dimension, see, e.g., [5, 19]. Though, this comes at the cost of superlinear complexity. While the
energy consumption corresponding to computational cost can be reduced through, e.g., optimizations on the cache
level [20] or the optimal use of heterogeneous hardware structures such as SIMD registers [21], we here propose
a complementary approach to directly avoid less impactful computations through the development of well-designed
hybridization concepts.

The authors of [12] demonstrated that the inclusion of disease import, i.e., infections caused by travelers and
commuters, is an important factor to explain disease dynamics. Via the metapopulation approach in [7], it was shown
how large the effects of disease import can become if testing is not done properly. Using simple statistics for disease
import can be a suitable first step in improving model precision in a considered focus region. However, if disease
import is subject to change through interventions, disease dynamics in coupled regions are advised to also be modeled
dynamically.

In this work, we will present a framework for spatial- and temporal-hybrid epidemiological modeling, combining
any pair of suitable fine-granular agent-based and coarse-granular population-based models. We will then suggest
a particular combination of two suitable models introduced recently in [22] and present results for three simplified
examples thereby demonstrating potential areas of application and the benefit of the hybrid models. In this context,
we will simulate a COVID-19-like disease with parameters motivated by [10]. However, as the scope of the current
paper is the disease-agnostic introduction of novel hybrid models, no further parameter refinement or real-world
application for COVID-19 has been performed. Let us note that any other disease model can be put in our framework.
We will show that our hybrid modeling approach can account for individual developing disease dynamics, otherwise
modeled with pure ABMs, while drastically reducing computational effort. We will provide discussions, limitations,
and directions for future research before we eventually draw a conclusion.

2. Materials and methods

In this section, we first present related work on hybrid models. Then we present an agent-based and a metapopu-
lation model, and eventually we introduce our novel, hybrid modeling framework which is applied to the two models
introduced before.

2.1. Related work

The development of hybrid models is often driven by the intention to combine the advantages of two different
modeling approaches. In the context of infectious disease dynamics, several suggestions for hybrid modeling have
been made. While the authors of [23, 24, 25] used ABMs together with ordinary differential equation (ODE)-based
and machine learning models, respectively, to improve parameter estimation, we focus on hybrid models where both
model types are used in the simulation and prediction process. However, also in this context, the term hybrid model is
used for many different realizations.

In [26, 27, 28, 29, 30], the authors used metapopulation or network-based models which are sometimes also de-
noted as hybrid models. These metapopulation models combined ODE-based models for different considered regions
while the mobility between regions was modeled with an agent-based modeling principle. Similarly, although not
coined hybrid, the PDMM of [22] used ODE-based formulations for single regions and a stochastic jump process
to model mobility between the regions. In [10, 31], other examples of network-based metapopulation models were
presented. There, ODE-based models were used for particular regions representing the nodes of a graph and deter-
ministic mobility was realized through the edges of the graph. While also using a metapopulation model combined
with an ABM in our hybridization framework, our understanding of hybrid goes beyond the aforementioned.

In [32, 33, 34], hybrid models were implemented that used different model types, namely agent-based and pop-
ulation-based models, in different temporal regimes. The authors used ABMs for low-incidence regimes and upon
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passing a threshold on the number of infected individuals, a switch to an ODE- or difference equation-based model
was executed. We call this temporal coupling of model types temporal hybridization.

The authors of [35] implemented a hybrid model for simulating large-scale traffic. They coupled an ABM and
an population-based model and provided rules for spatial exchange when one region was modeled with the ABM
and a neighboring region with the population-based model. We call this method spatial hybridization. Similar to the
temporal hybridization, they also implemented the conversion of a whole region from one model to another, here not
dependent on time but on user input.

In this paper, we will introduce novel spatial-hybrid models for infectious disease dynamics which use an ABM
in a focus region and macroscopic ODE-based models in all connected regions. Furthermore, we will extend the
application of temporal-hybrid models where switching takes place upon exceeding a threshold.

2.2. High-performance computing, carbon footprint, and green computing
High-performance computing (HPC) can enable breakthrough research results for ABMs [36] but require great

computing capability which naturally comes with high energy demands. The regularly updated Top500 list1 of the 500
most powerful commercially available computer systems known to the providers, lists the (peak) power consumption
for 199 out of the 500 supercomputers in November 2024. The total power consumptions for these 199 system sums
up to 431,222.57 kW. Using an optimistic emission of 380g CO2 for the production of 1 kWh power, provided by
the German Federal Environment Agency for the 2023 German energy mix with 51.9% of renewable energy [37],
these systems alone have a daily emission of 3932 tons of CO2. The author of [38] situated the carbon footprint for
the use of one million compute cores between an 8-hour air travel and a launch of a Falcon 9 rocket into space. On
a broader scale, green computing considers the entire product life cycle of technological devices from production
through operation and recycling, resulting in several challenges as highlighted by [39]. While substantial progress
has been made on the hardware side to increase energy efficiency on the operational level, in particular through
graphic processing units [38, 40], carbon emission of HPC systems cannot be neglected. The manufacturing or
recycling processes targeted by green computing have to be considered on another level, nevertheless, contributions
to green computing can be made by scientists when designing large-scale (scientific) software with energy-awareness.
Aside from classical performance engineering and code optimization to speed-up algorithms or achieve more efficient
hardware usage, hybrid, multiscale, or adaptive frameworks can achieve substantial performance gains or energy
consumption reductions. Through the principle of computing on a finest level where necessary and aggregating
information where possible, green computing advancements can be made by scientists and software developers.

2.3. Explicit agent- and metapopulation-based models
In this section, we will introduce an ODE-based metapopulation model and an ABM, originally introduced in [22].

These models will be used in the applications of our hybrid modeling framework. We will extend the set of infection
states to allow for a- and presymptomatic transmission. The description of the transmission and course of the disease
model is provided in Section 2.3.3.

We start with the ABM, whose change over time is described by a so called master equation motivated by chemical
reaction systems, cf., e.g., [41]. While this does impose some restriction on what the agents’ (inter)actions may be,
it allows us to derive a piecewise deterministic metapopulation model (PDMM) that shares parameters and behavior
with the ABM. The PDMM can be obtained by a model reduction of the presented ABM, see [22]. All models are
implemented in C++, which is among the fastest and most efficient programming languages [42, 38], and within the
MEmilio software [43] for modular epidemics simulations.

2.3.1. A diffusion- and drift-based ABM
The nature of agent-based modeling is to capture more intuitively and to model in a direct manner individual

(human) properties and interactions. Corresponding models have already been explored before the availability of
modern computers; see, e.g., [44]. The authors of [45] have set up a so far nonexisting taxonomy for ABMs in
infectious diseases and considered if particular ABMs included modules or submodels for society, transportation, and
environment.

1https://top500.org/lists/top500/list/2024/11/
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According to our understanding, an ABM consists of a finite number of unique agents α1, . . . , αna and an environ-
ment in which and to which an agent reacts. Furthermore,

• an agent is characterized by a finite number of features that determine its state,

• an agent interacts with other agents and their joint environment according to interaction rules,

• the state of an agent or the environment changes through interactions or with time.

The features of the used ABM are infection states given by the overall infection dynamics and agents’ positions
determined by agents’ movements. Hence, an agent is represented as a tuple (x, z) ∈ Ω × Z, where Ω ⊂ R2, the
environment, is a compact domain andZ = (z1, z2, . . . , znI ) a set of infection states. Considering na agents, the system
state is defined as a vector Y := (X,Z) ∈ Y := Ωna × Zna , where an agent α (with its two features, position and
infection state) is represented by the α-th component of the system state Yα = (xα, zα) = (X,Z)α. The evolution of the
system state over time is modeled as a continuous-time Markov process (Y(t), t ≥ 0). The evolution of the process
is determined by the master equation, that describes the relevant probability measure by the change of its probability
density

∂t p(X,Z; t) = Gp(X,Z; t) + Lp(X,Z; t) . (1)

The operator G defines the infection state adoptions and only acts on Z, while L defines location changes, only acting
on X.

For the formal definition of G and L the reader is referred to [22]. Here, we will only describe the realization
of the operators used for the later applications. Starting with the infection state dynamics, let i → j be an infection
state adoption, where i ∈ Z is the current infection state, and j ∈ Z \ {i} the infection state to adopt. For any
particular agent, we assume that the likelihood of this adoption to happen in a given amount of time is determined by
some rate f (α)

i, j (Y(t)) depending on the system state at the current time t. We call this rate (infection state) adoption
rate. A suitable method to realize this rate-dependent infection dynamic is using independent inhomogeneous Poisson
processes P(α)

i, j (t) := P f (α)
i, j (Y(t)) for infection state adoption i → j and agent α. As a natural extension of f (α)

i, j , for j = i,

we define f (α)
i,i ≡ 0. These rates should be interpreted as rates to change the current state.

For a given infection state adoption, various compartments can influence the adoption rate. The influence of an
adoption i→ j is defined as an index set Ψi, j ⊂ Z \ {i}. We use these influences to differentiate between two types of
adoptions:

1. First-order adoption: An adoption event that does not require interactions with other agents, i.e., spontaneous in-
fection state change, like recovery or death from the disease. Its adoption rate only depends on the compartment
the agent is currently in, thus Ψi, j = ∅.

2. Second-order adoption: An adoption based on pairwise interactions, i.e., infection via a contact with an infec-
tious agent. The rate depends on the compartment of origin of an agent as well as all influences in Ψi, j , ∅.

Therefore, if there are no influences, the adoption event is of first-order, and of second-order if there are any.
The adoption rates are given by adoption rate functions fi, j : Y→ [0,∞)na , which in general depend on the whole

system state. For each agent α, the α-th component of fi, j is given by the function f (α)
i, j : Y→ [0,∞), which depending

on the order of the adoption i→ j is defined as

f (α)
i, j (X,Z) = δi(zα)γi, j(xα) (2)

for first-order adoption events, or

f (α)
i, j (X,Z) = δi(zα)

∑
τ∈Ψi, j

na∑
β=1

δτ(zβ)γi, j,τ(xα, xβ) (3)
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for second-order adoptions. Here δi(zα) is the Kronecker-delta, being one when agent α has infection state i and zero
otherwise. The functions γi, j : Ω → [0,∞) and γi, j,τ : Ω2 → [0,∞) give the magnitude of the adoption rate, only
depending on an agent’s position. We choose

γi, j(x) = ci, j and γi, j,τ(x, y) = ci, j,τ1∥x−y∥Ω≤r , (4)

with a cutoff for second-order adoptions beyond the interaction radius r > 0. The radius determines how close
two agents have to be for being considered contacts, and we use rate constants ci, j ≥ 0, ci, j,τ ≥ 0. We always set
ci,i = ci,i,τ = 0 as adoptions from one state to itself are not possible. Note that rate constants ci, j and ci, j,τ could also be
time-varying ci, j(t) and ci, j,τ(t).

Agents’ movement trajectories y (omitting a dependency on infection state i) are determined by independent
diffusion processes. They are given by stochastic differential equations of the form

dx(t)
dt
= b(t, x(t)) + σ(t, x(t))ξ(t) . (5)

Here, b : [0,T ] ×R2 → R2 is called drift coefficient or potential on the domain, and σ : [0,T ] ×R2 → R2×m is called
diffusion coefficient or noise. The potential can be given by functions F(t) : Ω → R in which case b(t) := −∇F(t).
As b is assumed to be deterministic, all random behavior is solely caused by the noise. The magnitude of the noise
determines the influence of the white noise process ξ : [0,T ]→ Rm on the diffusion. Formally, it is defined as ξ = dW

dt ,
the derivative of the Brownian motion in Rm. The parameter m can be used to stratify agents’ movement, for example
with respect to infection state or region.

In practice, we use an agent’s current position as initial value for (5), and only integrate a small time step, using
the Euler-Maruyama method, to get its new position.

2.3.2. The corresponding piecewise deterministic metapopulation model
The corresponding piecewise deterministic metapopulation model (PDMM) simplifies the ABM by using two

approximations. In the following, we will shortly describe these approximations. The full derivation of the PDMM
from the ABM introduced above can be found in [22].

First, computational effort is reduced by discretizing the domain. The domain is split into subregions Ω1, ...,ΩnR

with Ω =
⋃nR

k=1Ωk and agents are aggregated to subpopulations in the subregions. Hence, an agent’s position is now
defined only by its subregion index k ∈ {1, ..., nR} instead of an exact position x ∈ Ω. Consequently, all agents in one
subregion have the same position. The system state is defined as the matrix N = (N(k)

i )i∈Z,k=1,...,nR
∈ RnI×nR

≥0 , with N(k)
i

the number of agents in region Ωk and infection state i. Let e(k)
i be the matrix where the entry for (i, k) is one and

all others are zero. The movement between subpopulations is modeled by Poisson processes L(k,l)
i with rates λ(k,l)

i for
spatial transitions from subregion k to l, k, l ∈ {1, . . . , nR}. These rates depend on the transitioning agent’s infection
state i and are of the form N → N + e(l)

i − e(k)
i . Formally, the spatial transition rates are given by the location change

operator L through

λ(k,l)
i :=

∫
Ω
δΩl (x)Li[δΩk (x)]dx∫
Ω
δΩk (x)dx

, (6)

but in practice they may be easier to sample than to calculate analytically. The space of all possible system states is
given by

Mna =

N

∣∣∣∣∣∣∣
nI∑

i=1

nR∑
k=1

N(k)
i = na

 , (7)

where na is again the total number of agents in the model.
Secondly, model and computational cost is reduced by approximating the infection state adoption processes by

a deterministic system of equations. The underlying assumption is that the populations are large such that infection
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Figure 1: Flow chart of the infection state adoption model. The infection states are Susceptible (S), Exposed (E), Carrier (C), Infected (I),
Recovered (R) and Dead (D). The dotted lines shows the influences for the second-order adoption.

state adoptions are relatively rapid and spatial transitions are comparatively rare. Using region-dependent adoption
rate functions f̂ (k)

i, j : RnI
≥0 → R≥0, the adoption dynamics are given by ODEs of the form

d
dt

N(k)
i (t) =

∑
j∈Z
i, j

( f̂ (k)
j,i (N(k)(t)) − f̂ (k)

i, j (N(k)(t))) , (8)

without accounting for spatial transitions. The evolution of the system state N(t) over time is described by a continuous-
time Markov jump process. Writing (N(t))t≥0 as a path, we obtain

N(t) = N(0) +
nR∑

k,l=1
k,l

nI∑
i=1

L
(k,l)
i

(∫ t

0
λ(k,l)

i N(k)
i (s)ds

)
(e(l)

i − e(k)
i )

+

nR∑
k=1

nI∑
i, j=1

∫ t

0
f̂ (k)
i, j (N(s))ds(e(k)

j − e(k)
i ) .

(9)

For the full derivation from the ABM through a stochastic metapopulation model to the PDMM using convergence
results for Markov processes, see again [22].

2.3.3. Transmission and course of the disease
As course of the disease model, we use a Susceptible-Exposed-Carrier-Infected-Recovered-Dead model, thus

Z = (S , E,C, I,R,D). Individuals in the Carrier compartment may be either pre- or asymptomatic, hence they do not
show symptoms while the Infected compartment encompasses all individuals showing symptoms ranging from mild
to severe. Both compartments are infectious to Susceptibles. There is only one second-order adoption (see Fig. 1)
which is S → E with influences ΨS E = {C, I}. As there is no outflow from the R compartment, this model does not
consider the possibility of reinfection.

Given the courses of the disease defined here, the local equations giving the infection state dynamics in region Ωk

of the PDMM from Section 2.3.2 write

d
dt

N(k)
S = −

ρ(k)
(
ξ(k)

C N(k)
C + ξ

(k)
I N(k)

I

)
nk

a
N(k)

S ,

d
dt

N(k)
E =

ρ(k)
(
ξ(k)

C N(k)
C + ξ

(k)
I N(k)

I

)
nk

a
N(k)

S − γ
(k)
E,C N(k)

E ,

d
dt

N(k)
C = γ

(k)
E,C N(k)

E − (γ(k)
C,R + γ

(k)
C,I)N

(k)
C ,

d
dt

N(k)
I = γ

(k)
C,I N

(k)
C − (γ(k)

I,R + γ
(k)
I,D)N(k)

I ,

d
dt

N(k)
R = γ

(k)
C,RN(k)

C + γ
(k)
I,RN(k)

I ,

d
dt

N(k)
D = γ

(k)
I,DN(k)

I .

(10)

6



(a) (b)

Figure 2: Design sketch of a spatial-hybrid model (a) and a temporal-hybrid model (b). Large gray disks represents (sub)regions, with possible
population exchanges indicated by arrows. The population is represented by small disks for agents and bar charts for ODE compartments. Red
indicates infected agents or population shares, gray indicates noninfected agents or population shares. The exchange in (a) only moves small parts
of a local population to another region, the exchange in (b) moves the entire population to the other model.

2.4. A framework of hybrid modeling and its application

In this section, we introduce the general concept of two different types of hybrid epidemiological models: spatial-
hybrid and temporal-hybrid models. These approaches do not exclude each other so that also spatio-temporal-hybrid
models can be realized. Both hybridization approaches are shown in Fig. 2. For both approaches, we will provide
explicit applications with the models presented in the previous section.

The motivation to use population-based models combined with ABMs for disease dynamics is to reduce the
computational effort of individual-level models which scale with the number of considered agents or individuals. In
particular, we here provide the computational cost for the two explicit models introduced before. For both models, we
need to consider computational costs for spatial transitions or movements and infection state adoption dynamics. The
movement of agents in the ABM is given by a diffusion process that has to be evaluated for every agent. Assuming
a constant time for the evaluation, the cost to calculate movement dynamics in the ABM lies in O(na). Furthermore,
the infection state adoption rates have to be evaluated in every iteration. As first order adoption rates are computed
per agent, the complexity as well is in O(na). For second-order adoptions, pairwise comparison of agents is necessary,
hence, we obtain a superlinear complexity and in the worst case one iteration has computational cost in O(n2

a). For the
PDMM the cost for infection state adoption dynamics in one iteration is given by integrating the system of differential
equations, thus it is independent of na. Technically, the cost for integration scales with the number of equations
meaning the number of regions and compartments, but their size is negligibly small compared to na. Therefore, the
relevant complexity and runtime factor in the PDMM is given by the spatial transition events. The frequency of the
spatial transitions depends on the magnitude of the rates. As the transition rates are multiplied with the corresponding
subpopulation, see (9), the complexity of the spatial dynamics lies in O(na). A summary of the model characteristics
is given in Table 1.

ABM PDMM
Complexity superlinear, up to O(n2

a) O(na)∗

Spatial domain continuous discrete
Adoption dynamics stochastic deterministic

Table 1: Model comparison of ABM and PDMM. The termO(na)∗ describes the runtime scaling due to spatial transition rates and can be replaced
by O(nrnI ), with nrnI ≪ na, under the assumption that spatial transitions are several orders of magnitude lower than infection state adoptions.

A requirement to the two models used is that we can define a mapping between them. In its simplest form, the
coarse-granular model may be obtained by projection from the fine model. In a more elaborated setting, we need
to map fine-granular, continuous features like viral load to a discrete, coarse-granular definition. Naturally, going
from fine-to-coarse is easier as information gets reduced. Going from coarse-to-fine either needs sampling or the
replication of retained information to realize a realistic model over the whole simulation horizon (spatial or temporal).
While in the current paper we only needed to sample a corresponding position in a 2D plane, more sophisticated
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sampling (based on retained information on travelers) will be necessary for more realistic ABMs. The corresponding
sampling then could include information on households or workplaces and agents’ immune histories. In general, the
coarse (and hybrid) results should approximate the fine result. One condition for this would be that the models’ mean
results converge. In addition, both models should match in the sense that there is a projection from the fine to the
coarse model population, with a suitable mapping from coarse to fine such that the information lost when retrieving
the fine model population from the coarse model, does not exceed the approximation error. Nevertheless, to determine
whether the results of a particular hybrid model will be accepted depends on individual evaluation of the trade-off
between approximation error and speed-up.

2.4.1. Spatial hybridization
The idea of a spatial-hybrid model originates from research questions on fine-granular infection spread, like

household or workplace transmission in a particular region. To consider only this (focus) region would neglect the
influence of connected regions on infection dynamics through, e.g., commuting activities. However, the use of fine-
granular models for all connected regions might be prohibitively expensive or individual-level data is either exclusively
available in the focus region, or substantially costly to collect for outside regions.

Consequently, we model only the focus region by a fine-granular model and use coarse-granular models in any
connected region. With this approach we get results with the desired resolution in the focus region while considering
the dynamic, time-dependent influence of the connected regions in a runtime efficient manner. In the following, we
will denote this approach as spatial hybridization and will refer to hybrid models with higher granularity in a focus
region as spatial-hybrid models.

For the spatial hybridization, we require a disjoint partition of the modeled domain into at least two subregions.
The exchange of populations between the different regions can be realized with different mobility models, however,
sending agents to a coarser model does cause loss of information (e.g. sending an agent to a simple ODE-based model
will only retain its infection state and lose all spatial information). To the best of our knowledge, there is only little
theory on this exchange problem and the exchange is highly dependent on the concrete models used. Some discussions
and suggested models can be found in [35, 28, 34]. While a particular goal is that the hybridization approaches the
ABM outcome, for instance, ODE-based models are not able to let a virus go completely extinctwhile ABMs can
simulate this extinction. This does not mean that a spatial-hybrid of ODE-ABM cannot be used if infection numbers
are small in a region where the potential of extinction is real. This only means that the results may differ from the
results of a fully fine-resolved (stochastic) model and hence that this limitation and its impact needs to be considered
when evaluating simulation results. For further discussion on this effect, see e.g. [46, 47]. More suitable combinations
could use stochastic differential equation-based models or a mixed spatial-temporal-hybrid (in combination with the
next section).

Two ways to obtain compatible models are to fit the two models against each other, or to derive the coarse model
(parameters) from the fine one. However, in both cases it is important to understand the model behavior very well
to be aware of inter-dependencies. For instance, location and infection state changes may depend on each other and
cannot always be fitted separately. An interesting discussion can be found in [48].

In the following, we will provide some further details on the precise realization of the spatial hybridization for
the ABM and PDMM introduced in Section 2.3. Let Ω1 be the focus region. For the precise implementation, ABM
and PDMM are set up for the whole domain while both models have no movement or infection state adoptions in the
non-relevant regions meaning the focus region for the PDMM and all regions outside the focus regions for the ABM,
i.e., the corresponding rates are zero. Then, both models are run independently from each other as long as no agents
are leaving or entering the focus region. On time points for population exchange, models will be synchronized. As
mentioned before, the exchange of agents and populations between the models is a crucial aspect of the hybridization.
As the mobility process of the PDMM is also based on agents and not on shares of the whole population and as we
set the adoption rates in the PDMM in the focus region to zero, it holds N(1)

i ∈ N for i ∈ Z. The exchange between
the models is done as follows:

• ABM → PDMM: Let t be the time point of the last exchange and Y−(t, t′) ⊆ Y(t′) be the set of agents that
need to be exchanged from ABM to PDMM, i.e., agents with positions x < Ω1, at time point t′ > t. As we
switch from fine-granular to the corresponding coarse-granular model, the exchange can be done by a trivial
projection. Agents in Y−(t, t′) are just added to the subpopulation N(ϕ(x))

i (t′) in the PDMM according to their
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Algorithm 1: Spatial hybridization

1 Create ABM and PDMM for Ω =
⋃nR

k=1Ωk and t = t0;
2 Set and restrict rates and populations, see Section 2.4.1;
3 ABM for Ω1;
4 PDMM for Ω2, . . . ,ΩnR ;
5 While t ∈ [t0, tmax] do;
6 Define next synchronization point t′;
7 Advance ABM and PDMM from t to t′;
8 /∗ Exchange agents between models ∗/
9 Foreach α ∈ Y−(t, t′);

10 Set N(ϕ(xα))
zα (t′) += 1;

11 Remove α from Y(t′);
12 Foreach i ∈ Z;
13 While N(1)

i (t′) > 0 do;
14 Sample position x ∼ P;
15 Add agent (x, i) to Y(t′);
16 Set N(1)

i (t′) −= 1;
17 Set t = t′;

infection state i ∈ Z and a projection ϕ : Ω → {2, ..., nR} with ϕ(x) = k for x ∈ Ωk. Subsequently, this agent is
removed from the ABM.

• PDMM→ ABM: The exchange from coarse-granular to fine-granular model is not as trivial, since the PDMM
only has spatial information aggregated to subregions and, hence, misses concrete positions inside the subre-
gions. For the exchange at time point t′,

∑
i∈Z N(1)

i (t′) new agent tuples are created and added to the ABM
system state Y(t′). The infection state z ∈ Z of a newly created agent is directly given by the PDMM sub-
population index. Its position x ∈ Ω1 is sampled from a distribution P which depends in general on the ABM
movement operator L, see Eq. (1). As we use a diffusion process in our applications, P depends on the potential
b, see Eq. (5), and will be precisely defined in Section 3.1 for the two examples provided there.

To get the initial populations for the spatial-hybrid model, we first only add agents to the ABM and then make one
exchange step to set the initial system state N(0) in the PDMM. With this, all agents outside Ω1 are removed from the
ABM, and in the PDMM the population in Ω1 is set to 0.

The implementation of the spatial hybridization is shown in Algorithm 1.

2.4.2. Temporal hybridization
The idea of temporal-hybrid models is based on the assumption that the lower the case numbers, the higher is

the impact of stochastic events to the (simulation) outcome. On the other hand, if case numbers are high, individual
behavior and stochastic events become less influential. This means that single simulation results of stochastic models
come closer to averaged outcomes and hence mean-field models deliver a suitable approximation also for individual
simulations.

The temporal hybridization is based on the same requirements as the spatial-hybrid model, except that we only
use one model for the whole domain and switch between coarse- and fine-granular model during the course of the
simulation. Then, instead of exchanging agents or populations on spatial transitions, we exchange the entire model
at certain time points. These time points depend on the current system state and are thus selected dynamically. As a
consequence, we need fine granular data for the whole domain.

In Section 3.2, we use an ABM to model disease spread when the number of infected individuals is below a
predefined threshold and switch to a coarser, hence ODE-based or metapopulation model, as soon as the number
of infected individuals exceeds the threshold. We denote hybrid models that switch between fine and coarse model
using a predefined, time-dependent criterion as temporal-hybrid models. In literature this kind of hybrid model is also
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Algorithm 2: Temporal hybridization

1 Create ABM and PDMM for Ω at t = t0;
2 Select one model as mcurrent ∈ {ABM,PDMM};
3 Initialize population only for mcurrent;
4 Define time step ∆t;
5 While t ∈ [t0, tmax] do;
6 mnext = Γ(mcurrent, t);
7 If mcurrent , mnext;
8 Move the population from mcurrent to mnext;
9 mcurrent = mnext;

10 Set t = t + ∆t;
11 Advance mcurrent to t;

referred to as stage-based hybrid model, see e.g. [28] and [32]. In case of the virus-extinction example from above,
we could change from an ODE-based or metapopulation model to an ABM whenever the number of virus carriers
drops below a threshold that would realistically allow an extinction to occur and switch back whenever the virus will,
with some certainty or probability, spread to a larger population. Note that this approach needs careful evaluation of
the switching condition.

Like for the spatial-hybrid model the exchange of information between models is crucial and dependent on the
concrete models used. A benefit of a temporal-hybrid model is that it can effectively save computational cost in
periods of diffusive spread while maintaining the required level of detail in highly stochastic periods.

The setup for the temporal-hybrid model is similar to the implementation of the spatial hybridization described
in Section 2.4.1, in so far as both models are setup with matching parameters. Instead of restricting the models to
spatial regions, both are used on the whole domain. However, only one model runs at a time. To decide which
model that is, we define a function Γ that returns, based on time, the system state at t and predefined criteria, a model
{ABM,PDMM}, i.e., Γ is a function that determines with which model to continue from a given time point. In the
application presented in Section 3.2, the model choice depends on the number of infectious agents, which makes
most sense as infectious disease dynamics are driven by the stochasticity in the behavior of infectious agents. The
procedure of the temporal hybridization is shown in Algorithm 2.

Moving the population between both models follows the same principle as the agent exchange described in Sec-
tion 2.4.1, applied to all agents in all regions at once, i.e., for changing from ABM to PDMM agents are just aggregated
to subpopulations according to their position and infection state and for the change from PDMM to ABM, agents’
concrete positions on the domain are sampled from a distribution P while their infection state is given by the subpop-
ulation index. The distribution P we used for our examples will be defined in Section 3.2.

3. Results

In this section, we provide simulation results for the agent-based and the metapopulation model presented in Sec-
tion 2.3. We will compare these results against our spatial- and temporal-hybrid models. The parameters related to
infection dynamics are motivated by wild-type COVID-19 and based on [10] for all examples (see Table D.8) – apart
from the transmission rate ρ(k) from Susceptible to Exposed, which varies between the examples and also between re-
gions of one example. The chosen values for the transmission rate ρ(k) are within the range presented in [10] and lead
to initial reproduction numbers R0 between 0.8 and 5, roughly corresponding to estimates for the effective reproduc-
tion number for wild-type COVID-19 in different German Federal states between March and August 2020, see [49].
However, the examples presented use simplified models as the scope of the current paper is the disease-agnostic
introduction of novel hybrid models. Therefore no further parameter refinement for COVID-19 and comparison to
real-world data has been done. All models are simulated using a temporal Gillespie algorithm, allowing us to obtain
stochastically exact results without sampling the distribution [50, 51]. We will highlight differences and similarities
in the particular model outcomes and compare model runtimes as a proxy indicator for computational effort. All
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simulations were conducted on a Intel Xeon "Skylake" Gold 6132 (2.60 GHz) with four nodes with 14 CPU cores
each and 384GB DDR4 memory, using separate cores to conduct Monte Carlo runs in parallel.

3.1. Spatial Hybridization

In the following, we present the results for two applications of the spatial hybridization. The first application
naturally extends the theoretical setting of [22] by using four instead of two potential wells (i.e., local minima of
the potential) and significantly more agents. In the second application, we consider a potential depicting the city of
Munich and its surrounding counties. For both applications, we performed a sensitivity analysis to determine the most
influential parameters, see Appendix A. Additionally, the implicit influence of parameters on the runtime of ABM,
PDMM, and spatial-hybrid model was analyzed in Appendix B.

3.1.1. Application 1 - A mathematical quadwell example
In our first application, we use a function with four minima - a quadwell potential - and a constant noise termσ ∈ R

for the diffusion process modeling agent movement in the ABM, see Eq. (5). The quadwell potential is constant in
time and given by

F(x, y) = (x2 − 1)2 + (y2 − 1)2; (11)

see Fig. 3. This function naturally defines four subregions for the PDMM that are given by the potential wells as
Ω1 = (−∞, 0) × (0,∞),Ω2 = (0,∞) × (0,∞),Ω3 = (−∞, 0) × (−∞, 0) and Ω4 = (0,∞) × (−∞, 0). This corresponds
to numbering the wells in Fig. 3b from 1 to 4 starting with the upper left and ending with the lower right well,
numbered line by line. The magnitude of the noise term determines the number of transitions between metaregions,
see Fig. E.13. As the infection dynamics in the focus region should be influenced by the dynamics in the other regions,
we do want spatial transitions between the metaregions, which do not occur for σ = 0.3 (Fig. E.13a) and only very few
for σ = 0.5 (Fig. E.13b). However, the spatial transitions should not happen as frequent as for σ = 0.6 (Fig. E.13c)
as the assumption for the runtime advantage of the PDMM is that spatial transitions are rare compared to infection
state adoptions (see Table 1). Therefore, we chose σ = 0.55 for our application, see Fig. 4. Given the ABM noise
term σ, the spatial transition rates for the PDMM can be sampled by calculating the average number of transitions
in a unit-time step relative to the population in the subregion. We chose ρ(k) = 0.1 for k = 1, 3, 4 corresponding to
R0 = 0.8 in region Ω1,Ω3 and Ω4 and ρ(2) = 0.3 corresponding to R0 = 2.4 in region Ω2. The parameters used for the
quadwell potential are summarized in Table D.8 and Table D.9. The system state at four different time points for one
ABM realization with 1000 agents in Fig. E.27 shows that, due to the higher transmission rate, the infection spreads
much faster in Ω2 compared to the other regions. We define Ω1 as the focus region for the spatial-hybrid model and
simulate the ABM, the PDMM and the spatial-hybrid model for tmax = 150 days. When agents transition to the focus
region in the spatial-hybrid model, their exact position has to be sampled from a distribution P, see Algorithm 1. For
this application we use a normal distribution whose parameters, i.e., mean and variance depend on the region an agent

(a) (b)

Figure 3: Quadwell potential (11) used for the diffusion process in the ABM. The four metaregions are separated by the axes x = 0 and y = 0.
The figure shows an (a) isometric view and (b) a contour plot of the potential.
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Figure 4: Position distribution for a simulation of 800 agents for 50 days in the quadwell scenario for noise term σ = 0.55. Agents are
initialized with positions having 0.3 distance from the axes x = 0,±2 and y = 0,±2.

transitions from. The mean and variance were calculated from the transitions of 2850 agents shown in Fig. E.28.
Denoting the region the transitioning agent came from as Ω(old)

α , this yields for the new position x(new)
α ∈ Ω1 of agent

α, x(new)
α ∼ Pα with

Pα =



(
N(−0.1, 0.032),N(0.94, 0.192)

)
, if Ω(old)

α = Ω2(
N(−0.94, 0.192),N(0.1, 0.032)

)
, if Ω(old)

α = Ω3(
N(−0.1, 0.032),N(0.1, 0.032)

)
, if Ω(old)

α = Ω4

(12)

We chose na = 8000 agents with 1% of the population being initially infected in every well (0.2% Exposed, 0.3%
Carrier and 0.5% Infected). The results of 500 simulations are shown in Fig. 5. We consider the ABM - the detailed
model - as ground truth and calculate the Mean Absolute Percentage Error (MAPE), the Mean Absolute Error (MAE)
and the Mean Squared Error (MSE) between the ABM mean and the mean of PDMM and spatial-hybrid model.
Comparing Fig. 5b and Fig. 5c, it can be seen that region 2 is the main driver of the infection dynamics i.e., most
infectious agents are in Ω2. Fig. 5a shows that in the focus region the spatial-hybrid model approximates the ABM
outcomes much better than the PDMM as the percentiles of the hybrid model - in contrast to the PDMM percentiles -
almost completely overlap the ABM percentiles. Furthermore, all error metrics calculated on the mean of simulation
outcomes are smaller for the spatial-hybrid model. As Ω2 is not the focus region, this region is modeled with the
PDMM in the spatial-hybrid model. Therefore the PDMM and hybrid model curves for Ω2, especially the percentiles,
have a similar shape, however the hybrid model has smaller errors than the PDMM, see Fig. 5c. For the sake of
completeness, the results for region 3 and region 4 are shown in Fig. E.29.

The runtime of the spatial-hybrid model for the chosen setup is dominated by the ABM, but is still one order
of magnitude smaller than the ABM runtime for 400 agents and even two orders of magnitude for 16, 000 agents,
see Fig. 6a. For 40, 000 agents, the runtime for the described scenario can be reduced by 98% using the spatial-hybrid
model.

In addition to the scaling behavior dependent on the number of agents, we consider the runtime scaling with
respect to the number of initially infected and the value of the transmission rate ρ(2) in region 2 with, otherwise,
the same setup as above. The runtime of ABM and spatial-hybrid model increases with an increasing proportion of
initially infected while the runtime of the PDMM is independent of the proportion of initially infected, see Fig. 7a.
The mean time of the ABM increases by 30% when increasing the initially infected from 0.1% to 1% and by nearly
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(a) (b) (c)

Figure 5: Spatial hybridization for the quadwell potential: Focus region, sum of all regions and Region 2. Number of infectious agents
(compartments C and I) for (a) the focus region Ω1 (b) the sum of all regions and (c) Region 2. The figures show the mean outcomes in solid lines
with a partially transparent face between the p25 and p75 percentiles from 500 runs. Additionally, MAPE, MAE, and MSE between the ABM
mean and the mean of PDMM and spatial-hybrid model are displayed.

(a) (b)

Figure 6: Log-scaled runtime (in seconds) for ABM, PDMM and spatial-hybrid model. Shown is the mean runtime of 56 runs (one compute
node) for (a) the quadwell example with the setup according to Table D.8, Table D.9 and (b) the Munich example with the setup according
to Table D.8, Table D.10.
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(a)

(b)

Figure 7: Runtime distribution for ABM, PDMM and spatial-hybrid model for a varying proportion of initially infected and varying values
of ρ(2). Shown are the runtimes of 112 runs for (a) five different values for the proportion of initially infected with the corresponding proportion
distributed equally to compartments E, C and I and (b) seven different values for the transmission rate in Ω2. In (a) ρ(2) = 0.3 for all runs and in
(b) 1% of the population (0.2% Exposed, 0.3% Carrier and 0.5% Infected) is initially infected in all runs.

50% when increasing from 0.1% to 10% initially infected. The mean time of the spatial-hybrid model increases by 7%
and 42% when increasing the initial number of infected from 0.1% to 1 and 10%, respectively. For an increasing value
of ρ(2), a similar behavior can be observed; see Fig. 7b. The mean runtime of the ABM rises by 175% when increasing
ρ(2) from 0.1 to 0.2 and by 38% when increasing ρ(2) from 0.2 to 0.4. The decreasing gradient can be explained by
the increasing number of recovered and dead agents when choosing ρ(2) = 0.4. For recovered and dead agents, no
infection state adoptions - needing computations and thus runtime - happen any more. The same behavior can be
observed for the spatial-hybrid model with an even earlier saturation. The PDMM runtime is again not influenced by
a varying value of ρ(2).

3.1.2. Application 2 - A potential for Munich and its surrounding counties
Secondly, we consider a less theoretical example, in particular a potential for the city of Munich, defined as our

focus region Ω1, and its surrounding counties.
To realize a difference between intercounty and intracounty mobility patterns, we define a potential on the political

map of the considered region. We apply a Gaussian curve on the discretized county borders (in pixels) to define a
potential F(x). More precisely, F(x) = h if x ∈ R is on a border, F(x) ∈ (0, h) modeled through a Gaussian curve if x
is in a given distance from the border and F(x) = 0 otherwise, i.e., x inside a county. The resulting potential directly
determines eight regions for the PDMM, aligning with the eight counties considered. Fig. 8 shows the potential with
a zoomed in snipped to the gradient on the border. The noise term σ and the border height h determine the number of
agents crossing a border. A drawback of modeling agent movements with potential and diffusion process is the limited
control on (intercounty) mobility and, in particular, that mostly agents next to the borders transition to neighboring
regions in an appropriate time. However, in reality individuals that are further away from the borders should also
transition to neighboring counties in a moderate time, e.g., on a daily basis caused by commuting activities. To that
end, we modify the agents’ movements. For short-distance travel, we use the diffusion process given by Eq. (5), where
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Figure 8: Potential defined for the ABM in and around Munich. Black areas have value zero and white parts value one. We obtain the potential
F by discretizing the map, resulting in a matrix P ∈ [0, 1]p×p and then interpolating between matrix entries.

we set the border height h for the potential F to 10 and additionally prevent crossing borders through random walks.
For long-distance travel, we introduce two normally distributed random variables Tαd and Tαr as additional attributes
for agent α. Samples of these variables are only used when α is a commuter on the current day ⌊t⌋. We use the random
variable Tαd ∼ N

(
µd, σ

2
d

)
as the time point an agent α leaves its home county on day ⌊t⌋ and Tαr ∼ N

(
µr, σ

2
r

)
as the

time point an agent α returns on day ⌊t⌋ – ignoring and resampling values beyond three standard deviations to ensure
that samples are in [0, 1]. We introduce a commuting term K(t), which is added onto L from Eq. (1), allowing us to
better control the desired number of border crossings. Let Kα(t) be the α-th component of K(t). This entry is zero if
agent α is not a commuter on day ⌊t⌋. If α is a commuter, Kα(t) is given by

Kα(t) =

π(xα) − xα, if tαd + ⌊t⌋ ∈ (t, t + δt] ∨ tαr + ⌊t⌋ ∈ (t, t + δt]
0, else

, (13)

where ⌊t⌋ marks the beginning of the day and tαd and tαr are realizations of Tαd and Tαr . Furthermore, π : Ω → Ω is a
random variable on the domain using the probability function

P (π(xα) = y) = P (y|xα ∈ Ωk; y ∈ Ωl) · λ(k,l) =


λ(k,l)

ν(Ωl)
, l , k

λ(k,k), l = k ∧ xα = y
0, l = k ∧ xα , y

, (14)

where λ(k,l) is the relative number of commuters from region Ωk to region Ωl and ν a counting measure on the dis-
cretized map (see Fig. 8) ignoring border pixels. Hence, ν(Ωl) is the number of pixels inside region Ωl. When using
this adapted movement for the ABM, we need to adapt the exchange of agents from PDMM to ABM for the spatial-
hybrid model as well. When we exchange an agent α from PDMM to ABM, we (uniformly) sample a new position
x(new)
α for it in the focus region Ω1, hence, P has the probability function

P
(
x(new)
α = y ∈ Ω1

)
=

1
ν(Ω1)

. (15)

In addition to sampling the new position in the focus region, we decide whether the agent has started its commute
or is returning from it, depending on the current time t. In case of the former, i.e., if t ≤ ⌊t⌋ + µd + z99.5 · σd with
z99.5 = 2.5758 the 99.5% quantile of the standard normal distribution, a return time tαr ∼ N

(
µr, σ

2
r

)
is drawn.

We expect commuters to leave their home county on average at 9 am with the 99.5% quantile between 5 am and
1 pm, resulting in µd =

9
24 and σd = ( 13

24 − µd)/z99.5 = 0.0647. Further, we expect commuters to return on average at 6
pm with the 99.5% quantile between 1 pm and 11 pm, hence µr =

18
24 and σd = ( 23

24 − µr)/z99.5 = 0.0809. The spatial
transition rates of the PDMM are equal to the commute weights λ(k,l), k, l = 1, . . . , 8 used in Eq. (14). Their values
are based on [10] and are given in Eq. (C.1). Fig. 9 shows that through the incorporation of the commuting term K,
the number of daily transitions in Munich City matches the static daily commuting data from [52] used in [10], and
scaled according to the number of agents na.
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Figure 9: Daily commuting from and to Munich City for different surrounding counties. 5% and 95% percentiles of daily transitions in
simulations shown as colored area together with median as solid line. The static register data from Federal Agency of Work, scaled to number of
simulated agents, is shown as dotted lines.

For this application, we chose the same transmission rate for all regions with ρ(k) = 0.2 corresponding to R0 = 1.6.
All parameters used for the Munich potential are summarized in Table D.8 and Table D.10. We chose na =14,064
agents with initially infected (0.05% Exposed, 0.05% Carrier, and 0.1% Infected) only in Ω5, see Fig. E.30. In all
other regions, all agents are susceptible at the beginning. We run 500 simulations of ABM, PDMM and spatial-hybrid
model for tmax = 100 days, see Fig. 10. We again consider MAPE, MAE, and MSE of the mean outcomes as error
metrics. The MAPE is not defined for the focus region because the ABM mean is zero on the first few days, see Fig. 10.
In general, the spatial-hybrid model and PDMM have both low errors. In the focus region the MAE of the PDMM is
even slightly lower than the one for the spatial-hybrid model. However, the MSE of the spatial-hybrid model is lower
and the percentiles also fit the ABM percentiles better than the PDMM percentiles. Yet, the p25 percentile of the
ABM displays that in at least 25% of all runs, the virus dies out which is not captured by neither spatial-hybrid model
nor PDMM. The reason for this is that ODE-based models are not able to let a virus go completely extinct and as the
region with initially infected is not the focus region, it is modeled with the PDMM in the spatial-hybrid. To capture
this behavior, a temporal-hybrid model could be used, see Section 3.2.

The runtime gain for the Munich potential is smaller than for the quadwell potential but the spatial-hybrid model is
still 6-times faster than the ABM for 40,000 agents, which is a runtime gain of more than 80%; see Fig. 6b. The reason
for this reduced effect is the very disadvantageous setup for the hybrid model with Munich City as focus region, whose
population makes up approximately 75% of all agents in the modeled counties. Consequently, in the spatial-hybrid
model, the number of agents modeled with the ABM is roughly 75% of na while in the quadwell potential it is only
25% of all agents. Secondly, the chosen initialization also has a relevant influence on the runtime gain. As we have an
overall low number of infectious agents in the simulation (on average at most 1.5% of the total population compared
to approximately 4% in the quadwell), there are fewer infection state adoptions in the ABM per time step, which leads
to less computational costs. One can observe that the runtime for the spatial-hybrid model for Munich is even slightly
higher than the ABM runtime for na < 700. Until that value, the exchange of agents from PDMM to ABM - which is
slightly more complex for the Munich potential compared to the quadwell potential - produces overhead which only
amortized for na > 700.

We furthermore considered the scaling behavior with respect to the number of initially infected in region 5, Munich
Land, and a changing value for ρ(k) with otherwise the same setup as above. The corresponding results are provided
in Fig. E.32 and align with the corresponding results from the quadwell potential.
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(a) (b)

Figure 10: Spatial hybridization for the Munich potential: Focus region and sum of all regions. Number of infectious agents (compartments
C and I) for (a) Munich City (focus region) and (b) the sum of all regions. The figures show the mean outcomes in solid lines with a partially
transparent face between the p25 and p75 percentiles from 500 runs. If possible, MAPE, MAE, and MSE between the ABM mean and the mean of
PDMM and spatial-hybrid model are displayed. Since the number of infected agents in the focus region is zero at the beginning, the MAPE cannot
be calculated for the left figure.

Figure 11: Single well potential (16) used for the diffusion process in the ABM of the temporal-hybrid model.
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3.2. Temporal hybridization

For the temporal hybridization we consider a single well potential given by

F(x, y) =
x4 + y4

2
; (16)

see Fig. 11. By design we only have one region and the PDMM reduces to a classical ODE-based model without
spatial resolution. We use a constant noise σ = 0.5 for the diffusion process and a relatively small contact radius
r = 0.1, thus σ has a crucial influence on contacts between agents in the ABM and consequently on second-order
adoptions. All parameters and their values for the single well application are listed in Table D.8 and Table D.11.

We chose a scenario with exactly one initially infected agent in compartment I with an otherwise susceptible
population. The transmission rate ρ(1) = 0.6 leading to R0 = 4.8 is set such that in around 30% of all simulations, the
virus dies out. Otherwise, we get an epidemic outbreak and introduce a nonpharmaceutical intervention (NPI) which
is implemented through a reduction of ρ(1) by κ = 80% after tNPI = 0.5(t0 + tmax). This NPI then leads to a slow
decline of infections over the remaining simulation time.

Since we are considering only one region, the derived PDMM is a deterministic ODE-model in which the virus
never dies out. Obviously, we cannot use this PDMM to meaningfully simulate this specific scenario in its entirety.
However, we can use the PDMM to speed up calculation once an outbreak reaches a certain size or after the virus has
become extinct. Therefore, the temporal-hybrid model always starts with the ABM, and then switches to the PDMM
once an extinction or an outbreak reaches a certain size. Note that after extinction, we could even stop the simulation
but we continue with the ODE-based model until tmax. This is done for practical reasons of comparison and since the
runtime of this model is negligible. The switch is defined by a threshold s > 1 to be compared against the sum of
agents in infection states E, C and I. If this number is larger than s, we switch from ABM to PDMM, projecting the
whole population of the ABM. A suitable value for the threshold s depends on the specific setup, especially on the
transmission rate ρ. It is not trivial to be determined, particularly for real-world scenarios.

A second threshold 0 ≤ s′ < s could be introduced to switch from PDMM to ABM as soon as the number of
infected agents falls below s′. This second threshold indicates a number of infected, where stochasticity is (again)
important to determine the development of the disease dynamics. This can be of particular importance if disease
mitigation, e.g., through NPIs, had been conducted successfully. When switching from PDMM to ABM, agents’
positions and infection states have to be sampled according to the current PDMM system state. The infection state
of an agent can be sampled according to the distribution given by the PDMM subpopulations N(k)

i . The position
is sampled from a distribution P which could for the considered single well potential be a uniform distribution on
[−1, 1] × [−1, 1], see Fig. E.33. In the presented scenario, we set s′ to zero.

Here, the model selection function Γ from Algorithm 2 returns the PDMM if the number of infected agents
exceeds s, and the ABM otherwise. We chose na =10,000, t0 = 0, tmax = 40, and a fixed step size of ∆t = 0.2 for
this Algorithm. The single initially infected agent is chosen randomly from the entire population. Fig. 12 shows the
results of 10,000 simulations of ABM, PDMM, and the temporal-hybrid model with s = 2 and s = 5.

The reduction of ρ(1) at tNPI = 20 leads to a kink in the number of infected agents (compartments E, C and,
I), see Fig. 12a. Since in 30% of all ABM simulations the virus dies out, the 25th-percentile is almost entirely zero,
except for right after the initialization. We can also see that the percentiles as well as the means of the temporal-
hybrid models with s = 2 and s = 5 are close together and the errors of both hybrid models are lower than the errors
of the PDMM. As expected, the temporal-hybrid model with threshold s = 5 has even lower errors than the one
with threshold s = 2. As the PDMM is deterministic, the percentiles and means of it are all the same and have a
MAPE of 0.0247 for all runs. While Fig. 12a shows the results for all simulations, Fig. 12b shows the results for all
simulations where the virus becomes extinct and Fig. 12c the corresponding curves for all simulations where the virus
survives, hence, an outbreak occurs. The PDMM is not shown in Fig. 12b as it is not able to capture the extinction
scenario. In Fig. 12c, both temporal-hybrid models and ABM curves have shifted upwards compared to the results
of all simulations in Fig. 12a. The PDMM result remains trivially the same and therefore underestimates the mean
number of infected in the survival scenarios. For completeness, we also provided the results for the later compartment
I, see Fig. E.34, where we see a rather smooth transition compared to the kink in Fig. 12.

Both switching thresholds seem to be a good choice as the resulting temporal-hybrid models are very close to the
ABM results, i.e., they have low errors - the mean as well as the percentiles. Note, however, that the low thresholds
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(a) (b) (c)

Figure 12: Temporal hybridization for the single well example. Shown is the sum of compartments E, C and I for (a) all runs, (b) extinction
runs with virus extinction, and (c) survival runs without virus extinction for ABM, PDMM and temporal-hybrid models with s = 2 and s = 5. The
figures show the mean outcomes in solid lines with a partially transparent face between the p25 and p75 percentiles from 10,000 runs with 10,000
agents.

are due to a large transmission rate ρ(1) and dense contact network realized through the diffusion-drift process. The
temporal-hybrid model with s = 2 does not capture the increase of the ABM mean in the extinction runs until tNPI ,
see Fig. 12b while the hybrid model with s = 5 does.

The ABM runs significantly faster in extinction runs than in survival runs (see Table 3), as there are no pairwise
interactions to consider once there are no infected agents anymore. Furthermore, the PDMM is - as expected -
multiple orders of magnitude faster than the ABM, making it desirable to use it whenever possible. On average, the
temporal-hybrid model for s = 5 is 20-times and the one for s = 2 even 40-times faster than the ABM in the results
for all simulations (see Table 2), 8-to 9-times for the extinction simulations (see Table 3), and 22- (s = 5) and 49-
times (s = 2) for the survival simulations (see Table 3). When comparing the total simulation time for the different
switching thresholds, all simulations show a time gain when using the lower threshold of s = 2 while for the survival
simulations the time gain is the greatest. For all stochastic models (ABM and temporal-hybrid), the difference in
minimum and maximum time to the mean time correlates with the large variation in simulation outcomes; see the
percentiles in Fig. 12. For this application, we do not further examine the runtime scaling behavior, as it does not
behave significantly different to the results for the spatial-hybrid model, see Section 3.1 and Fig. 6. The runtime of
the temporal-hybrid model is dominated by the proportion of time (instead of population) in which the ABM is used
for the simulation.

All simulations
Model min mean max
ABM 41.80 331.76 1835.93
PDMM 0.00040 0.00047 0.01140
Temporal-hybrid s = 2 0.5587 8.4082 92.6604
Temporal-hybrid s = 5 0.5591 16.6405 104.497

Table 2: Summarized simulation (in sec) timings for ABM, PDMM and temporal-hybrid models for all 10,000 simulations.

Extinction simulations Survival simulations
Model min mean max min mean max
ABM 41.80 48.77 109.147 91.07 442.20 1835.93
PDMM - - - 0.00040 0.00047 0.01140
Temporal-hybrid s = 2 0.5587 5.4414 85.2773 0.8115 9.5341 92.6604
Temporal-hybrid s = 5 0.5591 6.2384 99.2354 2.9843 20.7604 104.497

Table 3: Summarized simulation timings (in sec) for ABM, PDMM and temporal-hybrid models for simulations with and without virus
extinction.
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3.3. Energy consumption

To quantify the effects of the proposed hybrid models on the estimated CO2 emissions, we measured the en-
ergy consumption of the ABMs and the hybrid models for the chosen setups in the quadwell application Sec-
tion 3.1.1, Fig. 5, the Munich application Section 3.1.2, Fig. 10 and the single well application Section 3.2, Fig. 12.
We used LIKWID [53] to measure the energy consumption in Joules for each model using 56 cores in parallel, see Ta-
ble 4. According to extrapolations from the German Federal Environment Agency [37], 1 kWh power produced 380g
CO2 emissions in 2023. Using this extrapolation, we calculated the CO2 savings achieved for all applications by
replacing a full ABM through a hybrid ABM-ODE model. For the quadwell application, the spatial-hybrid model
emitted 1180g CO2 less than the full ABM which is a saving of 97.75%. For the Munich potential, the savings are -
like the runtime saving - less than for the quadwell potential, but we still reduced the CO2 emissions by a factor of
roughly 3.4. The reductions of the temporal-hybrid models for the single well application are nearly as high as of the
spatial-hybrid model for the quadwell application with 94.67% (s = 5) and 97.28% (s = 2) corresponding to a saving
of 2524g CO2 and 2594g CO2, respectively.

Model Power[kWh] CO2 emissions[g] CO2 reduction
ABM quadwell 3.17889 1207.97915 -
Spatial-hybrid quadwell 0.07162 27.21423 97.75%
ABM Munich 4.15400 1578.51937 -
Spatial-hybrid Munich 1.20890 459.38063 70.90%
ABM single well 7.01801 2666.84380 -
Temporal-hybrid (5) single well 0.37380 142.04358 94.67%
Temporal-hybrid (2) single well 0.19095 72.56005 97.28%

Table 4: Energy consumption of all models. The measurements for the quadwell potential represent 500 runs as in Section 3.1.1, the measurements
for the Munich potential represent 500 runs as in Section 3.1.2 and the measurements for the single well potential represent 10, 000 runs as
in Section 3.2. Power in kilo-Watt-hours (kWh) computed from measured energy and CO2 emissions[g] computed from [37]. Reduction (in
percent) computed for hybrid model compared to the full, reference ABM.

4. Discussion and Conclusion

While the number of research articles on hybrid models for infectious disease dynamics in the sense of our un-
derstanding is very small, several authors have published pioneering works in [32, 26, 27, 28, 34] over the last two
decades. The approaches coming closest to our works are given in [32, 34]. However, runtime and computational cost
have, e.g., not been considered in [32]. In [34] various interesting results have been published for a model running on
a laptop computer.

In this work, we formalized two hybridization approaches and introduced a general framework of spatial- and
temporal-hybrid models, combining agent-based and ODE- or metapopulation-based models. In particular, the temporal-
hybrid model with its dynamic model choice is also an adaptive model and future works may also consider adaptivity
in time and space through spatio-temporal-hybrid models.

We presented two suitable models recently introduced, which were adapted for our examples and combined in the
suggested manner. The examples provided show the application of the proposed hybridization framework in different
theoretical settings, thus demonstrating its runtime benefit while maintaining a high resolution in a specific area or
time frame. Although the parameters used in the examples are motivated by COVID-19, the application is not limited
to a particular pathogen. Moreover, since this paper is intended to serve as a proof of concept, we did not consider a
true real-world application. The critical aspect of combining the two model types is the definition of exchange rules,
an issue that has not been discussed a lot yet, but which has an essential impact on the accuracy and the performance
of the hybridization. Models that are derived from one another in a theoretical way, like in [22, 54] offer a more direct
way to implement exchanges. Nevertheless, nuances in projections or mappings can become important as it has been
observed in our simulations. With the presented random walk movement of agents, the same agent may cross region
boundaries multiple times in a short time, which might drastically change the hybrid model’s outcome compared to
the outcome of the fine model if this effect is not accounted for in the coarse model.
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The movement pattern of the ABM, given by a potential and a Brownian motion is a rather theoretical movement
pattern that delivered us two suitable models to be combined, but, especially when wanting to develop an actual real-
world application, a more realistic human mobility pattern or an ABM using contact networks should be considered.
Additionally, the transmission model of the ABM could be enhanced by incorporating more features such as an
individual viral load. In future work, we will investigate more complex ABMs realizing discrete locations such as
households, schools, and workplaces. For these, more sophisticated methods for projection and, also, reconstruction
of information will be needed.

As shown, hybrid models can combine the best of both worlds and deliver fine-granular insights through the use
of ABMs, using substantially reduced computational resources. Both hybridization approaches were able to capture
disease dynamics of the ABM better than the PDMM.

For the spatial hybridization, the runtime gain depends on the total number of agents in the focus region, relative
to all other regions modeled by metapopulations. Similarly, the temporal hybridization runtime gain depends mostly
on the proportion of simulation time that the ABM is used. From our simulations, we have seen that up to 98 % of the
simulation time can be saved by replacing an ABM by a spatial-hybrid model. Although this number depends highly
on the chosen models and the individual setting, a reduction of 90 % of the simulation time or a speedup of 10 can be
achieved easily.
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Appendix A. Sensitivity analysis

A sensitivity analysis was conducted for the ABM, the PDMM, and the spatial-hybrid model for both, the quadwell
application and the Munich application. In the temporal hybridization only ABM or PDMM is used at a time. We did
not perform another sensitivity analysis for the temporal setting as the most influential parameters for the temporal-
hybrid model are defined by the individual models used and, hence, align with the results for the Munich and quadwell
applications. We used the Morris screening method [55] to perform the sensitivity analysis. In this method the
elementary effect for parameter i is calculated as

di(x) =
y(x1, . . . , xi−1, (1 + ∆i)xi, xi+1, . . . , xn) − y(x)

∆i
(A.1)

with x = (x1, . . . , xn) an input vector, ∆i the relative change of input xi and y the model output. To weaken the effect
of the models’ inherent stochasticity, we performed 112 runs per model and used the mean to calculate the outputs
for the elementary effects. The number 112 was chosen to completely fill two compute nodes with 56 cores each. We
considered the elementary effects of the following outputs:

• Maximum number of agents simultaneously in infection state I:
maxt∈{0,...,tmax} NI(t),

• Total number of transmissions:
∑tmax

t=1 (NS (t − 1) − NS (t)),

• Total number of deaths: ND(tmax).

The number N j(t) is given by

N j(t) =


∑nR

k=1 N(k)
j (t), for the PDMM,∑na

α=1 δ j(zα), for the ABM.

For each parameter, we calculated 40 elementary effects resulting in 40 · 112 = 4480 runs per parameter plus 40 · 112
runs for the base values y(x). For all models we included two dummy variables which do not influence the model
outputs in the sensitivity analysis and serve as reference values. These dummy variables are used to quantify the effect
of output variation due to the models’ stochastic nature. The parameters shared between all models and their ranges
are given in Table D.5, while the parameters that vary between the applications are given in Table D.6 for the quadwell
and in Table D.7 for the Munich application. For parameters related to infection dynamics, the ranges are motivated by
wild-type COVID-19 and based on [10], apart from ξ(k)

C , ξ(k)
I which are set to 1.0 to reduce model complexity. The com-

mute and spatial transition rates for the Munich application are based on mobility matrices used in [10] which were de-
rived from mobility data from [52] and [56]. For the ranges of ABM parameters related to movement, we made an ed-
ucated guess based on preliminary investigations of the model behavior, see Fig. E.13, Fig. E.14, Fig. E.20, Fig. E.21.
The ranges for the PDMM spatial transition rates are chosen such that they match the ABM movement.

Appendix A.1. Quadwell Potential

The distribution of elementary effects gives information about how sensitive the considered output is to the pa-
rameter. As all models are stochastic, the elementary effects are not only influenced by the changed parameter value,
but also by the models’ inherent stochasticity as displayed by the grey bars in Fig. E.15, Fig. E.16 and Fig. E.17.
We first see that the remaining stochasticity is small (absolute values of 1-50, i.e., without the denominator in (A.1))
compared to the overall size of the system (4000 agents). A high variance in the calculated elementary effects of a
parameter indicates that the parameter’s influence is highly dependent on the value of other parameters, while a small
variance and a high absolute mean indicates parameters with high impact. For all models, the transmission rate ρ and
the average time in the Infected state τI have the highest positive influence on the maximum number of agents simul-
taneously in infection state I with τI having a slightly higher mean than ρ. The probability of being asymptomatic µR

C
followed by the average time in the Exposed state τE have the highest negative influence, i.e., an increase of µR

C and
τE leads to a lower number of agents simultaneously in infection state I. This is in line with our expectations as the
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number of agents simultaneously in I grows if agents stay on average longer in that infection state, which is caused by
a large value of τI . Additionally, more transmissions - caused by a large value of ρ - also lead to more agents being in
infection state I. In contrast, a larger proportion of agents recovering before developing symptoms lead to less agents
in infection state I. Looking at the total number of transmissions, ρ is - as expected - the most influential parameter,
followed by τI and τC the average time in the Infected and Carrier state, respectively. The only parameter having a
relevant negative influence on the total number of transmissions is µR

C . For the number of total deaths, the probability
of dying µD

I is the most influential parameter having a positive influence, followed by ρ, τI and τC . The significant
impact of µD

I on the number of total deaths is trivial. Moreover, large values of ρ, τI , and τC lead to more agents in
infection state I which again has a positive influence on the number of deaths – as agents can only die from infection
state I; see Fig. 1. As for the maximum number of agents simultaneously in infection state I and the total number of
transmissions, the probability of being asymptomatic µR

C has again the highest negative influence on the total number
of deaths.

Appendix A.2. Munich Potential

By adding the commuting term to the ABM movement, we get one additional parameter for the Munich application
ABM and consequently also one additional parameter for the spatial-hybrid model. However, the results for the
Munich potential align with the results for the quadwell potential, see Fig. E.22, Fig. E.23 and Fig. E.24 for more
details.

Appendix B. Runtime analysis

We used the results from the sensitivity analysis (see Appendix A) to assess the influence of model parameters on
the runtime. For that we performed 100 simulations of ABM, PDMM, and spatial-hybrid model with 4000 agents per
simulation and considered the runtime dependence on the model outputs that we already considered in the sensitivity
analysis, i.e., the maximum number of agents simultaneously in infection state I, the total number of transmissions,
and the total number of deaths. As we identified with the sensitivity analysis the most influential parameters on the
considered model outputs, we can, after having analyzed the influence of the outputs considered in the sensitivity
analysis on the runtime, deduce which parameters have an influence on model runtime. For instance, if increasing
the value of a specific parameter leads to an increase in the total number of transmissions, and an increase of the
total number of transmissions leads to an increase in runtime, we can - using transitivity - deduce that an increase of
the parameter value leads to an increase in runtime. The results of the corresponding runtime analysis can be found
in Fig. E.18 for the quadwell potential and in Fig. E.25 for the Munich potential. First, the figures indicate that both
potentials have a very similar runtime behavior. Secondly, considering the left column of Fig. E.18 and Fig. E.25,
it can be seen that the ABM is several orders slower than the PDMM and the spatial-hybrid model whereby the
runtime difference between the spatial-hybrid model and the ABM for the Munich potential is smaller than for the
quadwell potential. As already mentioned this is due to high proportion of agents modeled with an ABM in the
Munich spatial-hybrid model – which is with 75% three times higher compared to the quadwell where only 25% of
agents were modeled with an ABM. The runtime of ABM and spatial-hybrid model first increases with the maximum
number of agents simultaneously in infection state I (Fig. E.18a, Fig. E.25a) and the number of total transmissions
(Fig. E.25b, Fig. E.18b) until it saturates and even slightly decreases again at the end. This effect stems from more
transmissions and more infected individuals, which lead to more computations for infection state adoptions - first-
and second-order. However, if the majority or even the whole population has been infected, no more computations
for infection state adoptions are necessary, as there are no transitions from Recovered or Dead to another infection
state. In contrast, there is no correlation between PDMM runtime and the number of infected agents, i.e., the runtime
was not observed to increase with increasing transmissions or maximum number of agents simultaneously in infection
state I. The runtime scaling for the total number of deaths looks similar (Fig. E.18c, Fig. E.25c), which is because
more deaths arise from more infections, meaning more computations for infection state adoptions for the ABM and
the spatial-hybrid model. Fig. E.19 and Fig. E.26 show the runtime scaling of all models for a total susceptible
population, i.e., computations are only made for movement. The plots display the linear runtime scaling of the PDMM
(see Fig. E.19c, Fig. E.26c) and the superlinear scaling for ABM (see Fig. E.19a, Fig. E.26a) and spatial-hybrid model
(see Fig. E.19b, Fig. E.26b).
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Appendix C. Commute weights for the Munich potential

The commute weights used in Eq. (14) for the commuting term K (Eq. (13)) in the Munich potential are given by
the matrix Λ ∈ R8×8 with

Λ =



0 0.03212 0.02734 0.02059 0.11452 0.02289 0.02989 0.02053
0.21861 0 0.02286 0.03115 0.0388 0.00586 0.00236 0.0027
0.26164 0.03214 0 0.00623 0.04413 0.01992 0.0063 0.00455
0.22401 0.04979 0.00709 0 0.04785 0.00572 0.004 0.00305
0.48702 0.02424 0.01961 0.01871 0 0.03798 0.02593 0.04008

0.188 0.00707 0.0171 0.00432 0.07334 0 0.07431 0.00901
0.31851 0.00369 0.00701 0.00392 0.06496 0.09641 0 0.04246
0.21125 0.00408 0.00489 0.00289 0.09699 0.01129 0.04101 0


. (C.1)

Entry (k, l), k, l = 1, . . . , 8 of Λ is the commute rate λ(k,l) as well as the PDMM spatial transition rate between region
Ωk and Ωl, see Fig. E.30 for a mapping of the regions. The matrix Λ corresponds to a submatrix of the commuter
matrix used in [10] with entry (k, l) divided by the population size of county k such that we have relative instead of
absolute numbers.

Appendix D. Supplementary Tables

Parameter Description Range Source

na Number of agents

ρ(k) Transmission rate [0.025, 0.6] [10]

ξ(k)
C Increase or decrease factor on transmission probability for

Carrier agents
1.0 (A)

ξ(k)
I Increase or decrease factor on transmission probability for

Infected agents
1.0 (A)

τE Average time in Exposed state [2.67, 4.0] [10]

τC Average time in Carrier state [1.2, 6.73] [10]

τI Average time in Infected state [5.0, 12.0] [10]

µR
C Probability of transitioning from Carrier to Recovered [0.15, 0.3] [10]

µD
I Probability of transitioning fron Infected to Dead [0.0, 0.08] [10]

γ(k)
E,C Rate from Exposed to Carrier in region k 1

τE
see τE

γ(k)
C,R Rate from Carrier to Recovered in region k µR

C
τC

see µR
C , τC

γ(k)
C,I Rate from Carrier to Infected in region k 1−µR

C
τC

see µR
C , τC

γ(k)
I,D Rate from Infected to Dead in region k µD

I
τI

see µD
I , τI

γ(k)
I,R Rate from Infected to Recovered in region k 1−µD

I
τI

see µD
I , τI

E0 Proportion of initially Exposed agents [0.0, 0.01]

C0 Proportion of initial Carrier agents [0.0, 0.01]

I0 Proportion of initial Infected agents [0.0, 0.01]

Table D.5: Parameters shared between all models and their ranges used for all sensitivity analyses. Parameter ranges are either based on [10]
corresponding to wild-type COVID-19 or are assumed to be fixed (A) to reduce model complexity.
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Parameter Description Range Source

r Interaction radius∗ [0.05, 0.6] (B), see Fig. E.14

σ Noise term of the diffusion process∗ [0.4, 0.6] (B), see Fig. E.13

λ(k,l)
i Spatial transition rate from region k to region l being in

infection state i∗∗

[
2e−5, 0.0125

]
(B), match range
for σ

Table D.6: Parameters and their ranges used for the sensitivity analysis of the quadwell application. The asterisk ∗ denotes exclusive ABM
parameters and ∗∗ denotes exclusive PDMM parameters. (B) denotes ranges that are based on preliminary investigations done to determine a
reasonable range for the parameter.

Parameter Description Range Source

r Interaction radius∗ [65.0, 260.0] (B), see Fig. E.21

σ Noise term of the diffusion process∗ [5.0, 15.0] (B), see Fig. E.20

λ(k,l) Commute rate∗ and spatial transition rate∗∗ from region k
to region l

[
1e−3, 0.22

]
[10], [52], [56]

Table D.7: Parameters and their ranges used for the sensitivity analysis of the Munich application. The asterisk ∗ denotes exclusive ABM
parameters and ∗∗ denotes exclusive PDMM parameters. (B) denotes ranges that are based on preliminary investigations done to determine a
reasonable range for the parameter.

Parameter Value

ξ(k)
C 1.0

ξ(k)
I 1.0

τE 3

τC 3

τI 5

µR
C 0.1

µD
I 0.004

Table D.8: Parameter values shared for all applications.
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Parameter Value

ρ(k), k = 1, 3, 4 0.1

ρ(2) 0.3

σ 0.55

r 0.4

λ(k,l)
D 0.0

λ(k,l)
i , (k, l) ∈ D := {(1, 4), (4, 1), (2, 3), (3, 2)} 1e−7

λ(k,l)
i , (k, l) ∈ {1, 2, 3, 4}2 \ D, i = S ,R 0.0048

λ(k,l)
i , (k, l) ∈ {1, 2, 3, 4}2 \ D, i = E,C, I 0.0033

Table D.9: Parameter values for the quadwell potential.

Parameter Value

ρ(k), k = 1, . . . , 8 0.2

σ 10

r 280

Table D.10: Parameter values for the Munich potential.

Parameter Value

ρ(1) 0.6

σ 0.5

r 0.1

κ 0.8

Table D.11: Parameter values for the single well potential.

Appendix E. Supplementary Figures

(a) (b) (c)

Figure E.13: Position distribution for a simulation of 800 agents for 50 days in the quadwell scenario. Results for noise term (a) σ = 0.3, (b)
σ = 0.5 and (c) σ = 0.6. Agents are initialized with positions having 0.3 distance from the axes with x = 0 and y = 0.
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Figure E.14: Different interaction radii and position distribution inΩ1 for σ = 0.55. The positions of 800 agents for 50 days are shown zoomed
in to well Ω1 together with interaction radius r = 0.05, r = 0.4 and r = 0.6.
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Figure E.15: Sensitivity analysis of the ABM for the quadwell potential. Shown are the elementary effects of the maximum number of agents
simultaneously in infection state I (top), the total number of transmissions (middle) and the total number of deaths (bottom). Model stochasticity
is displayed by the grey bars that show the p25 and p75 percentiles of 112 runs without parameter variation.
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Figure E.16: Sensitivity analysis of the PDMM for the quadwell potential. Shown are the elementary effects of the maximum number of agents
simultaneously in infection state I (top), the total number of transmissions (middle) and the total number of deaths (bottom). Model stochasticity
is displayed by the grey bars that show the p25 and p75 percentiles of 112 runs without parameter variation.
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Figure E.17: Sensitivity analysis of the spatial-hybrid model for the quadwell potential. Shown are the elementary effects of the maximum
number of agents simultaneously in infection state I (top), the total number of transmissions (middle) and the total number of deaths (bottom).
Model stochasticity is displayed by the grey bars that show the p25 and p75 percentiles of 112 runs without parameter variation.
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(a)

(b)

(c)

Figure E.18: Runtime (in seconds) dependent on various model outputs for ABM, PDMM and spatial-hybrid model for the quadwell
potential. Shown is the runtime dependent on (a) the maximum number of agents simultaneously in infection state I, (b) the total number of
transmissions and (c) and the total number of deaths for 100 simulations with 4000 agents per simulation.
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(a) (b)

(c) (d)

Figure E.19: Runtime (in seconds) for a completely susceptible population dependent on the number of agents for ABM, PDMM and
spatial-hybrid model for the quadwell potential. Shown is the runtime dependent on the number of agents for (a) the ABM, (b) the spatial-
hybrid model, (c) the PDMM and (d) all models with log-scaled axes for 100 simulations where the whole population is susceptible, i.e., there are
no infection state adoptions.

(a) (b) (c)

Figure E.20: Intracounty movement of 35 agents for 50 days in the Munich scenario. Results for noise term (a) σ = 5, (b) σ = 10 and (c)
σ = 15. The plots show only the movement given by the diffusion process, without commuting.
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Figure E.21: Different interaction radii for the Munich potential. Shown are interaction radius r = 68, r = 137 and r = 275. Cross interaction
of agents in different subregions is not possible, hence r = 275 corresponds to the current subregion being the interaction area.
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Figure E.22: Sensitivity analysis of the ABM for the Munich potential. Shown are the elementary effects of the maximum number of agents
simultaneously in infection state I (top), the total number of transmissions (middle) and the total number of deaths (bottom). Model stochasticity
is displayed by the grey bars that show the p25 and p75 percentiles of 112 runs without parameter variation.
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Figure E.23: Sensitivity analysis of the PDMM for the Munich potential. Shown are the elementary effects of the maximum number of agents
simultaneously in infection state I (top), the total number of transmissions (middle) and the total number of deaths (bottom). Model stochasticity
is displayed by the grey bars that show the p25 and p75 percentiles of 112 runs without parameter variation.
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Figure E.24: Sensitivity analysis of the spatial-hybrid model for the Munich potential. Shown are the elementary effects of the maximum
number of agents simultaneously in infection state I (top), the total number of transmissions (middle) and the total number of deaths (bottom).
Model stochasticity is displayed by the grey bars that show the p25 and p75 percentiles of 112 runs without parameter variation.
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(a)

(b)

(c)

Figure E.25: Runtime (in seconds) dependent on various model outputs for ABM, PDMM and spatial-hybrid model for the Munich poten-
tial. Shown is the runtime dependent on (a) the maximum number of agents simultaneously in infection state I, (b) the total number of transmissions
and (c) and the total number of deaths for 100 simulations with 5600 agents per simulation.
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(a) (b)

(c) (d)

Figure E.26: Runtime (in seconds) for a totally susceptible population dependent on the number of agents for ABM, PDMM and spatial-
hybrid model for the Munich potential. Shown is the runtime dependent on the number of agents for (a) the ABM, (b) the spatial-hybrid model,
(c) the PDMM and (d) all models with log-scaled axes for 100 simulations where the whole population is susceptible, i.e., there are no infection
state adoptions.

Figure E.27: System state for one ABM realization for the quadwell potential at four different time points. Shown are the time points
t = 0, 50, 100 and 149 for a simulation with 1000 agents for the quadwell application.
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Figure E.28: Position distribution of 2850 agents transitioning to Ω1 (focus region) in the quadwell potential.

(a) (b)

Figure E.29: Spatial hybridization for the quadwell potential: Region 3 and 4. Number of infectious agents (compartments C and I) for (a) Ω3
and (b) Ω4. The figures show the mean outcomes in solid lines with a partially transparent face between the p25 and p75 percentiles from 500 runs.
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Figure E.30: Regions and corresponding indices for the Munich potential. The regions, i.e., potential wells are 1 - Munich City, 2 - Fürsten-
feldbruck, 3 - Dachau, 4 - Starnberg, 5 - München Land, 6 - Freising, 7 - Erding, 8 - Ebersberg.

Figure E.31: System state for one ABM realization for the Munich potential at three different time points. Shown are the time points t = 0, 50
and 100 for a simulation with 1400 agents for the Munich application.
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(a)

(b)

Figure E.32: Runtime distribution for ABM, PDMM and spatial-hybrid model for a varying proportion of initially infected in Ω5 and
varying values of ρ(k). Shown are the runtimes of 112 runs for (a) five different values for the proportion of initially infected with the corresponding
proportion distributed equally to compartments E, C and I and (b) seven different values for the transmission rate ρ(k) in all regions. In (a) ρ(k) = 0.2
for all runs and in (b) 0.05% is Exposed, 0.05% is Carrier and 0.1% is Infected in the population of Ω5 in all runs.

42



Figure E.33: System state for one ABM realization for the single well potential at four different time points. Shown are the time points
t = 0, 10, 25 and 39 for a simulation with 1000 agents for the single well application.

(a) (b) (c)

Figure E.34: Compartment I for the single well potential for ABM, PDMM and temporal hybridization. (a) All runs and selected runs (b)
with and (c) without virus extinction for ABM, PDMM and temporal-hybrid models with s = 2 and s = 5. The figures show the mean outcomes in
solid lines with a partially transparent face between the p25 and p75 percentiles from 10,000 runs with 10,000 agents.
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