Gottschling, Nina Maria und Antun, Vegard und Hansen, Anders C. und Adcock, Ben (2024) The troublesome kernel: on hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems. SIAM Review. SIAM - Society for Industrial and Applied Mathematics. ISSN 0036-1445.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Methods inspired by Artificial Intelligence (AI) are starting to fundamentally change computational science and engineering through breakthrough performances on challenging problems. However, reliability and trustworthiness of such techniques is a major concern. In inverse problems in imaging, the focus of this paper, there is increasing empirical evidence that methods may suffer from hallucinations, i.e., false, but realistic-looking artifacts; instability, i.e., sensitivity to perturbations in the data; and unpredictable generalization, i.e., excellent performance on some images, but significant deterioration on others. This paper provides a theoretical foundation for these phenomena. We give mathematical explanations for how and when such effects arise in arbitrary reconstruction methods, with several of our results taking the form of `no free lunch' theorems. Specifically, we show that (i) methods that overperform on a single image can wrongly transfer details from one image to another, creating a hallucination, (ii) methods that overperform on two or more images can hallucinate or be unstable, (iii) optimizing the accuracy-stability trade-off is generally difficult, (iv) hallucinations and instabilities, if they occur, are not rare events, and may be encouraged by standard training, (v) it may be impossible to construct optimal reconstruction maps for certain problems. Our results trace these effects to the kernel of the forward operator whenever it is nontrivial, but also apply to the case when the forward operator is ill-conditioned. Based on these insights, our work aims to spur research into new ways to develop robust and reliable AI-based methods for inverse problems in imaging.
elib-URL des Eintrags: | https://elib.dlr.de/209444/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | The troublesome kernel: on hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | SIAM Review | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Verlag: | SIAM - Society for Industrial and Applied Mathematics | ||||||||||||||||||||
ISSN: | 0036-1445 | ||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||
Stichwörter: | Inverse Problems, Artificial Intelligence, AI Hallucinations | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Gottschling, Nina Maria | ||||||||||||||||||||
Hinterlegt am: | 28 Nov 2024 10:01 | ||||||||||||||||||||
Letzte Änderung: | 28 Nov 2024 10:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags