elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The troublesome kernel: on hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems

Gottschling, Nina Maria und Antun, Vegard und Hansen, Anders C. und Adcock, Ben (2024) The troublesome kernel: on hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems. SIAM Review. SIAM - Society for Industrial and Applied Mathematics. ISSN 0036-1445.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Methods inspired by Artificial Intelligence (AI) are starting to fundamentally change computational science and engineering through breakthrough performances on challenging problems. However, reliability and trustworthiness of such techniques is a major concern. In inverse problems in imaging, the focus of this paper, there is increasing empirical evidence that methods may suffer from hallucinations, i.e., false, but realistic-looking artifacts; instability, i.e., sensitivity to perturbations in the data; and unpredictable generalization, i.e., excellent performance on some images, but significant deterioration on others. This paper provides a theoretical foundation for these phenomena. We give mathematical explanations for how and when such effects arise in arbitrary reconstruction methods, with several of our results taking the form of `no free lunch' theorems. Specifically, we show that (i) methods that overperform on a single image can wrongly transfer details from one image to another, creating a hallucination, (ii) methods that overperform on two or more images can hallucinate or be unstable, (iii) optimizing the accuracy-stability trade-off is generally difficult, (iv) hallucinations and instabilities, if they occur, are not rare events, and may be encouraged by standard training, (v) it may be impossible to construct optimal reconstruction maps for certain problems. Our results trace these effects to the kernel of the forward operator whenever it is nontrivial, but also apply to the case when the forward operator is ill-conditioned. Based on these insights, our work aims to spur research into new ways to develop robust and reliable AI-based methods for inverse problems in imaging.

elib-URL des Eintrags:https://elib.dlr.de/209444/
Dokumentart:Zeitschriftenbeitrag
Titel:The troublesome kernel: on hallucinations, no free lunches and the accuracy-stability trade-off in inverse problems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gottschling, Nina Marianina-maria.gottschling (at) dlr.dehttps://orcid.org/0009-0004-0275-7522NICHT SPEZIFIZIERT
Antun, VegardUniversity of Oslo, NorwayNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hansen, Anders C.University of Cambridge, UKNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Adcock, BenSimon Fraeser University, CanadaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:SIAM Review
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:SIAM - Society for Industrial and Applied Mathematics
ISSN:0036-1445
Status:akzeptierter Beitrag
Stichwörter:Inverse Problems, Artificial Intelligence, AI Hallucinations
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Gottschling, Nina Maria
Hinterlegt am:28 Nov 2024 10:01
Letzte Änderung:28 Nov 2024 10:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.