Baumhoer, Celia und Leibrock, Sarah und Zapf, Caroline und Beer, Werner und Künzer, Claudia (2024) Automated crevasse mapping for Alpine glaciers: A multitask deep neural network approach. International Journal of Applied Earth Observation and Geoinformation. Elsevier. ISSN 1569-8432. (eingereichter Beitrag)
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Glacier crevasses are fractures in ice that form as a result of tension. Information on crevasse locations is important for mountaineers and field researchers to plan a safe traverse over a glacier. Today, Alpine glaciers change faster than cartography can keep up with up-to-date manually created maps on crevasse zones. For the first time, this study presents an approach for automated crevasse mapping from high-resolution airborne remote sensing imagery based on a multitask deep neural network. The model was trained and evaluated over seven training and six test areas located in the Oetztal and Stubai Alps. By simultaneously preforming edge detection and segmentation tasks, the multitask model was able to robustly detect glacier crevasses of different shapes within different illumination conditions with a balanced accuracy of 0.86. Our approach is applicable to large-scale applications as demonstrated by creating high-resolution crevasse maps for the entire Oetztal and Stubai Alps for the years 2019/2020. Spatial and temporal transferability was proven by creating high-quality crevasse maps for all glaciers surrounding Großglockner, Piz Palü, and Ortler. The here presented datasets can be integrated into hiking maps and digital cartography tools to provide mountaineers and field researcher with up-to-date crevasse information but also inform modelers on the distribution of stress within a glacier.
elib-URL des Eintrags: | https://elib.dlr.de/209402/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Automated crevasse mapping for Alpine glaciers: A multitask deep neural network approach | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Erschienen in: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 1569-8432 | ||||||||||||||||||||||||
Status: | eingereichter Beitrag | ||||||||||||||||||||||||
Stichwörter: | glacier, Alps, crevasse, deep learning, machine learning, Ötztal, Stubai, mountaineering, German Alpine Club (DAV), high-resolution, Orthophoto | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Fernerkundung u. Geoforschung, R - Maschinelles Lernen, R - Geoprodukte und -Systeme, Services | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||||||||||
Hinterlegt von: | Baumhoer, Dr. Celia | ||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2024 11:24 | ||||||||||||||||||||||||
Letzte Änderung: | 26 Nov 2024 11:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags