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A B S T R A C T

Glacier crevasses are fractures in ice that form as a result of tension. Information on the location of crevasses is important for mountaineers and field researchers to 
plan a safe traverse over a glacier. Today, Alpine glaciers change faster than cartography can keep up with up-to-date manually created maps on crevasse zones. For 
the first time, this study presents an approach for automated crevasse mapping from high-resolution airborne remote sensing imagery based on a multitask deep 
neural network. The model was trained and evaluated over seven training and six test areas located in the Oetztal and Stubai Alps. By simultaneously preforming 
edge detection and segmentation tasks, the multitask model was able to robustly detect glacier crevasses of different shapes within different illumination conditions 
with a balanced accuracy of 86.2 %. Our approach is applicable to large-scale applications as demonstrated by creating high-resolution crevasse maps for the entire 
Oetztal and Stubai Alps for the years 2019/2020. Spatial and temporal transferability was proven by creating high-quality crevasse maps for all glaciers surrounding 
Großglockner, Piz Palü, and Ortler. The here presented datasets can be integrated into hiking maps and digital cartography tools to provide mountaineers and field 
researcher with up-to-date crevasse information but also inform modelers on the distribution of stress within a glacier.

1. Introduction

Crevasses are fractures in ice that form as a result of tension (Smith, 
1976; van der Veen, 1998; Vaughan, 1993). Stress and strain develop 
due to vertical variations in ice velocity initiating starter microcracks at 
or near the surface of ice. These cracks propagate downward into the ice 
until reaching a point where the strength of the ice prevents them from 
penetrating further into the glacier (Nath and Vaughan, 2003). In the 
Alps, the depth of crevasses ranges from a few meters to 20–30 m with a 
width of 6–8 m as has been shown by field measurements. In contrast, 
the length of a crevasse can reach tens or even hundreds of meters 
(Ravanel et al., 2022). The sheer size of these crevasses poses a danger to 
mountaineers, rescue services and researchers at fieldwork especially 
when covered by snow bridges (Eder et al., 2008; Hohlrieder et al., 
2010; Klocker et al., 2022; Taurisano et al., 2006). There are several 
strategies to avoid crevasse falls such as an early start and return time, 
walking in a rope team and optimal route planning. By walking in a rope 
team, crevasse falls remain without further consequences and are not 
recorded statistically. Despite these safety precautions, based on the 10- 
year average (2014–2023) annually 41 crevasse falls accidents happen 
in Switzerland and 13 in Austria that require mountain rescue services 
(Österreichisches Kuratorium für Alpine Sicherheit ÖKAS, 2024; 

Schweizer Alpen-Club SAC, 2024). In France, on average 13 crevasse 
falls require rescue services based on a 11-year average between 2008 
and 2018 (Vanpoulle et al., 2021). Luckily, the mortality rate is low with 
two cases per year in Switzerland, one case per year in Austria (based on 
the 10-year average 2014–2023), and 3 cases in France (11-year average 
2008–2018) (Vanpoulle, 2022). But in the face of climate change, 
crevasse falls will become more likely and traversing a glacier more 
difficult. In 2022, crevasse accidents (70 accidents) almost doubled 
compared to the previous 10-year average (38 accidents) because of 
glaciers with poor snow cover due to a winter with little snow and 
melting of the older snowpack uncovering previously filled crevasses 
(Schweizer Alpen-Club SAC, 2024, 2022). Therefore, it is more impor
tant than ever to provide maps with up-to-date crevasse zones for safe 
route planning.

In the Alps, information on crevasse zones is provided by classical 
cartography maps of the Alpine clubs in Austria and Germany, the 
Institut Géografique National in France, the Tabacco maps in Italy, and 
the Federal Office of Topography (swisstopo) in Switzerland. Today, 
glaciers change faster than cartography can keep up with time intensive 
manual mapping effort and field surveys. Therefore, information on 
crevasses in recent maps can be out dated and not sufficient to plan a 
safe traverse. The automated detection of surface crevasses from remote 
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sensing imagery can reduce the effort (Colgan et al., 2016) but is very 
challenging due to similarities with other surface features, requirements 
for high-resolution imagery and changing illumination conditions 
(Izeboud and Lhermitte, 2023; Shankar et al., 2023). Only few studies 
exist for ice sheets (Colgan et al., 2016; Izeboud and Lhermitte, 2023; 
Libert et al., 2022; Surawy-Stepney et al., 2023b), outlet glaciers (de 
Vries et al., 2023) and even fewer for mountain glaciers (Bhardwaj et al., 
2016) requiring higher-resolution imagery. Traditional approaches used 
changes in the backscatter signal to identify crevasses in TerraSAR-X 
imagery (Marsh et al., 2021), brightness changes identified by 
different filters in ASTER imagery (Xu et al., 2011), Gabor filters for 
Sentinel-2 data (de Vries et al., 2023) or processing-intensive Sentinel-1 
interferograms and a Canny edge detection algorithm (Libert et al., 
2022). Newer developments apply neural networks for crevasse detec
tion. Zhao et al (Zhao et al., 2022) applied a U-Net to map surface cre
vasses in Sentinel-1 SAR imagery (40 m spatial resolution) with an 
accuracy of 84.2 % (F1 score 72.5 %). Surawy-Stepney et al. (2023b)
scaled-up crevasse mapping with a U-Net-like architectures and mapped 
crevasses from Sentinel-1 IW imagery (10 m spatial resolution) for entire 
Antarctica between 2015–2022 with a ROC accuracy between 91–93 % 
(depending on shelf). First experiments with foundation models such as 
the Segment Anything Model (SAM) (Kirillov et al., 2023) showed 
satisfying results for mapping glacial features (e.g. supraglacial lakes, 
icebergs, glacier termini) except for crevasse mapping were several 
manual feature definitions were necessary to produce segmentation 
results at all (44 % F1 score with prompts). Outside of the polar regions, 
ground penetrating radar (GPR) was used to detect crevasses in moun
tain regions (Eder et al., 2008; Zamora et al., 2007). Even though being a 
valuable tool for crevasse detection, GPR measurements require field
work and are only suitable for smaller local studies. The only study using 
remote sensing satellite imagery for glacier crevasse mapping was per
formed in the Himalayas for the Shaune Garang glacier. Crevasses were 
detected based on pan-sharpened thermal and short infrared Landsat 
imagery with a spatial resolution of 15 m and compared to GPS field 
measurements (root-mean-square error of 6.32 m for crevasse length, 
Bhardwaj et al., 2016).

To this day, no automated large-scale approach for Alpine crevasse 
mapping exists and existing approaches for ice sheets are not transfer
able to the Alps due to the insufficient spatial resolution and a different 
complexity of Alpine crevasses. The study by Marsh et al. (2021) detects 
crevasses by their backscatter signal in TerraSAR-X imagery. Even 
though the high-resolution spotlight imagery of TerraSAR-X (2 m, multi- 
looked) would be sufficient to detect larger Alpine crevasses, the width 
of the crevasse does not correlate with the brightness profile. Meaning, 
that in areas with many small crevasses, signal overlays are likely and 
only rough locations of crevasses could be determined. The Gabor 
Crevasse Detector developed by de Vries et al. (2023) would be also 
applicable for high-resolution optical imagery but is unable to distin
guish between linear features at the glacier surface. For Alpine glaciers 
this would impose the detection of all linear surface expressions 
including melt water channels, elongated debris on the glacier surface, 
healed crevasses and ascent paths. As these traditional approaches fall 
short in some aspects for Alpine crevasses, a number of studies explored 
convolutional neural networks (CNN) for crevasse detection. These ap
proaches are predominantly based on a U-Net-like architectural design 
and demonstrated potential to automate crevasse detection over ice 
sheets (Lai et al., 2020; Surawy-Stepney et al., 2023b; Zhao et al., 2022). 
However, in the Alps these CNN-based methods are not yet applicable. 
The U-Net approach of Lai et al. (2020) was trained with 125 m reso
lution MODIS data being too coarse to detect Alpine crevasses. Zhao 
et al. (2022) and Surawy-Stepney et al. (2023b) detect crevasses with a 
U-Net architecture based on the backscatter signal in Sentinel-1 imagery 
at a resolution of 40 m and 50 m, respectively. Even when using higher 
resolution Sentinel-1 imagery at 10 m resolution, Alpine crevasses 
would be too narrow to create a strong backscatter signal which would 
allow the detection of individual crevasses by a U-Net. Furthermore, in 

general the segmentation approach with a U-Net tends to blurriness at 
the edges (Heidler et al., 2022). This effect might be minor for very wide 
crevasses and fractures present in Antarctica but substantial for Alpine 
crevasses only being several pixels wide and very close together. This 
problem can be solved by adding an edge detection task to semantic 
segmentation ensuring attention on clear boundaries as loss is moni
tored simultaneously for both tasks (Heidler et al., 2022). Using an edge 
detection approach alone would in contrast focus on edges in the im
agery but would miss the semantic information on crevasse shapes 
learned by the semantic segmentation branch. Therefore, we want to 
take advantage of current developments in computer vision combining 
segmentation and edge detection and the availability of high-resolution 
remote sensing imagery to develop an automated crevasse detection 
algorithm for regular updates of hiking maps for safe routing and 
providing information on stress fields within a glacier for modelers. This 
objective rises the following research questions: (1) How can crevasses 
be mapped automatically from aerial imagery in the Alps? (2) How well 
performs a deep neural network for the automated mapping of glacier 
crevasses compared to common edge detection methods? (3) How 
transferable is this approach to other areas outside of the training re
gions? Our novel approach for crevasse mapping will provide accurate 
locations of crevasse zones and provide important information for safe 
Alpine tour planning with digital map services and provide glacier 
modelers with yet unprecedented information on stresses within a 
glacier.

2. Materials and methods

2.1. Study area

The study area covers the Oetztal and Stubai Alps with a glacier area 
of approx. 174.30 km2 representing 53 % of Austria’s glacier area 
(329.55 km2) (BEV, 2024).The Oetztal Alps lost an area of 10.50 km2 

glaciated area between 1997 and 2006 (Abermann et al., 2009). The 
study area is located in an Alpine-dry region and climate change has 
impacted the regions infrastructure significantly. Especially the path 
network of hiking trails needs to be adapted on a regular basis and 
mountain huts are threatened by permafrost thaw. For example, glacier 
tongue retreat required the construction of a new suspension bridge over 
the Gurgler Ache gorge, where once a path led flat over the glacier 
tongue which cannot be crossed anymore without ice cover. The 
Hochwildehaus is closed since 2016 due to unstable ground resulting 
from permafrost thaw resulting in uncertain statics of the building. The 
Oetztal and Stubai are important tourism destinations with 5,2 million 
overnight stays in the tourism season 2023 (Land Tirol, 2024; Tour
ismusverband Stubai Tirol, 2024). Especially mountaineers are attracted 
by the Wildspitze (3768 m) being the highest peak of North Tyrol. Fig. 1
gives an overview of the study region showing the glaciated area in the 
Oetztal and Stubai Alps with examples of different crevasse types.

2.2. Datasets

In the Alps, glacier crevasse mapping requires high-resolution (<5 
m) remote sensing imagery as their width ranges between sub-meter 
scale to a maximum of 6–8 m (Ravanel et al., 2022). This study uses 
open access orthophotos acquired in the years 2019, 2020 and 2022 by 
Land Tirol (data.tirol.gv.at) with a spatial resolution of 20 cm. For the 
Oetztal and Stubai Alps, a total of 1,076 orthophoto scenes were 
downloaded. These scenes were masked with glacier boundaries from 
the Austrian digital landscape model (BEV, 2024) which were manually 
optimized by the Austrian Alpine Club (ÖAV) to match the current 
glacier extent. After masking for glaciated areas, 446 scenes remained to 
create glacier crevasse maps.

Out of them, 15 scenes with varying crevasse and glacier morphol
ogies present in the Oetztal and Stubai Alps were selected for training 
and testing the neural network. These 15 areas were defined manually 
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by browsing all available aerial imagery and selecting locations with the 
greatest possible variation in the appearance of crevasses that occur in 
Austria. Additionally, one scene over the Großvenediger was added to 
include large (>3 m width) crevasses covered by snow and icefalls (steep 
parts in the glacier with rapid flow resulting in a chaotic crevassed 
surface) not common in the Oetztal and Stubai Alps to this extent. 
Training and test regions are shown in Fig. 1 covering Wildspitze, 
Hochwilde, Western Daunkogel, Kräulspitze, Zuckerhüttl, Gaislehnko
gel and Großvenediger. In total, an area of 16.13 km2 is included in the 
training-validation dataset of which 6.92 km2 account for glaciated area. 
The test dataset comprises six distinct scenes and encompasses 3.09 km2, 
with a glacier area of 1.69 km2. This results in an approximate train/test 
split of 80/20 as using 70 % or more of the dataset for training results in 
more accurate predictions (Bichri et al., 2024). During training, 10 % of 
the training dataset were reserved for validation ensuring to stop model 
training before overfitting. In the selection of training and test images, 
care was taken to cover all the different crevasse types in both the 
training and test datasets. The number of crevasse types varies greatly 
due to natural and regional differences in the occurrence of crevasse 
types. Transverse crevasses occur in 79 % of the imagery whereas 
splaying, longitudinal and marginal crevasses as well as bergschrunds 
(large crevasses at the top of glacier that separate moving ice from not 
moving ice above) occur only in less than 30 % of the imagery. Icefalls 
are least common and only represented in one scene in the 
Großvenediger area. For the significantly smaller test dataset marginal 
and transverse crevasses are most common, whereas splaying and lon
gitudinal crevasses as well as bergschrunds and icefalls are only covered 
by one scene. Detailed information on the used orthophotos and a visual 
representation of the test and train dataset can be found in Table S1 and 
Fig. S2 in the supplementary materials.

2.3. Data preparation

Once the 15 scenes representing various crevasse types have been 
defined, the next step is to generate labels to provide the model with 
ground truth information during training. To minimize the manual 
effort, the Canny Edge detection algorithm implemented in the OpenCV 
Python package (Bradski, 2000) was used to create rough crevasse 
outline labels with manually adjusted thresholds per orthophoto scene. 
Afterwards, the labels were manually edited to add and remove outlines 
where the Canny Edge detection algorithm failed. The final manually 
edited ground truth labels include all visible crevasses and bergschrund 
locations. After rasterization of manually edited crevasse outlines, a one- 
pixel buffer (adding 20 cm on each side of the line) was applied to 
reduce the class imbalance of crevasse edge pixels compared to back
ground pixels. Scenes included in the training dataset were tiled into 
512 x 512 pixel tiles with a stride of 100 pixels including all three RGB 
channels. On each band, a percentile clip with a low threshold of 2 % 
and a high threshold of 98 % was applied for image enhancement and 
then normalized (min–max-normalization) globally in relation to the 
entire training dataset. All tiles with more than 20 % no data pixels were 
removed to speed up training time and enhance the number of tiles with 
high-information content. 8-fold augmentation (including the original 
image) was applied to increase our training dataset by all possible 
combinations of mirroring and rotation. This resulted in a total of 
85,184 tiles for model training. The data preparation workflow is also 
shown in the flowchart describing the entire model training process in 
Fig. 2.

2.4. Crevasse mapping with HED-UNet

The HED-UNet is a multitask convolutional neural network (CNN) 
that was initially developed to detect calving fronts of Antarctic ice 
shelves from earth observation radar data (Heidler et al., 2022). The 

Fig. 1. Map of Austria showing the glaciated areas in the Oetztal (blue) and Stubai (turquoise) Alps. The enlarged image sections a-g show examples of different 
crevasse morphologies represented in the training and test dataset. The extent of the training and test region is visualized in orange and pink, respectively. Base map: 
basemap.at. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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CNN combines edge detection and image segmentation in a multitask 
fashion by monitoring loss for both tasks simultaneously. The HED-UNet 
has an encoder-decoder architecture with six down- and upsampling 
blocks (see Fig. 2). The encoder calculates feature maps of different 
resolutions by downsampling to aggregate contextual information. This 
contextual information is re-distributed to the initial image resolution 
by upsampling in the decoder via skip connections. By creating deep 
feature pyramids, deep feature maps at lowest resolution might not be 
considered by the model. To avoid this, deep-supervision is imple
mented to create multiscale ground truth predictions. This enhances the 
receptive field of the model and encourages the network to better cap
ture structures at all resolutions of the pyramid. Finally, the merging 
heads (one each for the segmentation and edge detection) combine the 
predictions at different pyramid levels into the final classification result 
for the edge detection and segmentation tasks separately. Merging is 
performed with hierarchical attention merging to attend to different 
resolution levels of all pyramid levels. This provides the model with 
large-scale information on glacier location and small-scale information 
for precise crevasse locations. The final output of the HED-UNet are two 
separate files with prediction probabilities for the edge detection task 
and for the segmentation task. For the here presented crevasse mapping 
approach we only use the output of the segmentation merging head as 
the edge predictions are at identical locations but wider. We adapted the 
HED-UNet to handle three channel RGB data instead of SAR data, 
optimized the image pre-processing for optical remote sensing data 
(percentile clip instead of decibel calculation) and decreased the initial 
tile size from 768 x 768 to 512 x 512 pixels to allow for larger batch 
sizes. All other parts of the model architecture are the same as in the 
original model by Heidler et al. (2022).

2.5. Model training

The HED-Unet was trained on a NVIDIA GeForce GTX 1080 Ti with 
12 GB RAM for 100 epochs. Optimization of the model weights is done 
by Adam optimizer with the default learning rate of 0.001 (no grid 
search was performed to optimize for other learning rates than the 
default). We chose a batch size of 16 by empirically testing powers of 
two for the largest batch size fitting into the GPU’s RAM and auto 
weighted binary cross entropy (AutoBCE) for training. AutoBCE is an 
adaptively balancing modification of the binary cross-entropy loss to 
equally weight both classes (crevasse, background) even though having 
a highly imbalanced dataset. Training for one epoch took 59 min. The 
best model was chosen by the epoch with the lowest validation loss at 
epoch 86 with a loss of 0.048 and an edge accuracy of 98.7 % for both, 
training and validation data. Inference (prediction of results) is per
formed on 2048 x 2048 pixel tiles and a stride of 265 to minimize 
computational cost and exploit all available GPU RAM. During infer
ence, crevasse maps were created for the entire Oetztal and Sutbai Alps 
within 7.5 h where inference on one scene took one minute.

2.6. Accuracy assessment

The model was tested on 3.09 km2 of data (1.69 km2 glaciated) not 
used during training. The manual labels are considered as ground truth 
even though crevasse mapping is a very subjective task and results may 
vary strongly between cartographs. The test sites cover different 
crevasse morphologies to test the model performance for a maximum of 
variety including bare glacier ice, snow covered crevasses, ice falls, 
transverse, and splaying crevasses. Due to the lack of independent test 
data, we use manually tuned Canny Edge detection crevasse maps over 

Fig. 2. Flowchart visualizing data preparation, model training, accuracy assessment and running the inference.
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the test areas as a benchmark. We selected various classification accu
racy metrics to assess the performance of our model as accuracy highly 
varies depending on how class imbalance is handled for calculation. 
Precision indicates how many pixels of the predicted crevasse pixels are 
in reality crevasse pixels and recall how many pixels are identified 
correctly of all ground truth crevasse pixels. Assessing both in 
conjunction is performed with the F1-score representing the harmonic 
mean of precision and recall. For these measures we used the macro- 
averaged and weighted recall, precision, and F1-score because of the 
high imbalance between crevassed and non-crevassed pixels. The 
macro-averaged approach is the unweighted mean of the metrics giving 
relatively high penalty for inaccuracies in the minority class of crevasses 
(Izeboud and Lhermitte, 2023). In contrast, the weighted version for 
precision, recall and F1-score accounts for the class imbalance. The 
specificity identifies how well true negatives are identified. To balance 
the model’s performance on both classes, the balanced accuracy is a 
combined measure of macro-average recall and specificity to assess 
model performance based on balanced classes. Finally, the Cohen’s 
Kappa quantifies the degree of agreement between two classifications 
beyond random coincidence (Cohen, 1960).

3. Results and Discussions

3.1. Glacier crevasse map for the Oetztal and Stubai Alps

Fig. 3 shows enlarged sections of the HED-Unet created crevasse map 
for the Oetztal and Stubai Alps. The example over Wazebachferner 
highlights the accurate detection of snow-covered crevasses (Fig. 3a). 
The outlines for crevasses on bare ice are shown for Eiskastenferner, 
Gepatschferner, Sulzenauferner, and Wilder-Freiger-Ferner (Fig. 3b,c,h, 
i). Examples of Marzellferner, and Wasserfallferner show the crevasse 
detection of snow filled crevasses on bare ice (Fig. 3e,f). Open bergs
chrunds were mapped at Hintereisferner and Sulzenauferner (Fig. 3d,g). 

Overall, one can observe that crevasses are outlined very accurately on 
bare glacier ice where crevasses are very prominent. Different shapes 
such as cross-cutting crevasses, icefalls, transverse crevasses or splaying 
crevasses are outlined clearly. The detection of snow-covered crevasses 
poses a greater challenge as only parts of the crevasses are detected at 
places where crevasses open up or snow bridges subsided compared to 
the surrounding area. Detecting the full width and length of these cre
vasses would require the use of longwave radar data or ground pene
trating radar (Eder et al., 2008; Zamora et al., 2007) both not (yet) 
available for large-scale studies as presented here. Equally difficult is the 
mapping of snow-filled crevasses as longitudinal snow patches can 
remain on the glacier and may not necessarily represent a snow-filled 
crevasse. In these areas the model is very dependent on the manually 
labeled data it received during training. Hence, as presented in our 
manual labels, only snow-filled crevasses that are clearly recognizable 
are classified as crevasse. The detection of the bergschrund from optical 
imagery can be challenging due to the proximity to steep rock walls 
creating partial shadows on the bergschrund. The HED-UNet model was 
able to reliably detect open bergschrunds no matter of the illumination 
conditions. This shows the strength of deep convolutional neural net
works in detecting properties based on their spatial context and 
morphology.

3.2. Glacier crevasse change in comparison to existing maps

Analysing glacier crevasse change is very challenging due to the 
limited availability of previous crevasse location information. The only 
available data source are maps created by cartographs of the German 
and Austrian Alpine Club over several decades. These maps are only 
available as image raster data whereby only a qualitative comparison on 
crevasse zones is possible. In Fig. 4 we compare crevasse zones from the 
DAV map for the Wildspitze (DAV, 2014) with our crevasse locations for 
four sample regions. For Sexegertenferner, Gepatschferner, and 

Fig. 3. Glacier crevasse map (blue) for the Oetztal and Stubai Alps with detailed examples for (a) Wazebachferner, (b) Mittlerer Eiskastenferner, (c) Gepatschferner, 
(d) Bergschrund of Hintereisferner, (e) Marzellferner, (f) Wasserfallferner, (g) Bergschrund and (h) crevasses at Sulzenauferner, and (i) Wilder-Freiger-Ferner. Base 
map: basemap.at. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Comparison of crevasse zones in existing map products and the results of this study for (a) Sexegertenferner, (b) Gepatschferner, (c) Taschachferner, and (d) 
Mittelbergferner with enlarged views (turquoise) of vanished or less prominent crevasse zones.

Table 1 
Mean accuracy metrics for the test dataset compared to the Canny Edge benchmark and the results of HED-UNet.

Canny Edge HED-UNet

macro weigh. macro weigh.

Precision (%) True Positives (TP)
Ture Positives (TP) + False Positives (FP)

70.6 98.0 73.7 98.6

Recall (%) True Positives (TP)
Ture Positives (TP) + FalseNegatives(FN)

67.5 98.2 86.3 98.3

F1-Score (%)
2 x

Recall(R) × Precision(P)
Recall (R) + Precision (P)

67.5 98.0 78.5 98.4

Accuracy (%) 1
nsamples

∑nsamples − 1
i=0

1(ŷi = yi)
98.2 98.3

Specificity (%) True Negatives (TN)

Ture Negatives (TN) + False Positives (FP)
99.3 98.7

Balanced Accuracy (%) Recall (R) + Specificity(Sp)
2

68.9 86.2

Cohen’s Kappa Observed Agreement (P0) − ExpectedAgreement(Pe)

1 − ExpectedAgreement(Pe)

0.38 0.57
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Mittelbergferner significantly fewer crevasses were detected. A closer 
look at the orthophotos confirms the absence from previously prominent 
mapped crevasse zones (Fig. 4a,b,c). The retreating glacier tongues of 
Taschachferner and Mittelbergferner have fewer crevasses at the front 
compared to the existing maps. Either the glacier is no longer present at 
the former mapped crevasse zone, or it has thinned to such an extent that 
only parts of the former crevasse zone remained (Fig. 4c,d). These ex
amples highlight the importance for timely and regularly updated 
crevasse maps in the Alps due to recent rapid glacier change.

3.3. Accuracy of crevasse mapping results

Table 1 shows the results of the accuracy assessment for the Canny 
Edge detection benchmark and the HED-UNet generated results 

compared to the manual ground truth. For a visual interpretation, Fig. 5
shows different crevasse examples selected from the test data for the 
ground truth, Canny Edge detection, HED-UNet result and an overlaid, 
combined view. Overall, the HED-UNet approach outperforms the 
manually tuned Canny Edge detection result for every calculated metric 
except specificity explaining the true negative rate. This is related to the 
fact that the Canny Edge detection underestimates the extent of cre
vasses or does not recognize them at all hence false positives are very 
unlikely. Furthermore, the Canny Edge detection was used as a basis to 
create the manual labels and overlaps in correct regions for 100 %. In 
contrast, the HED-UNet sometimes extends crevasses beyond the manual 
label also missing out smaller crevasses in some cases as can be seen in 
Fig. 5c and 4e. Accuracies for recall, precision and F1-score are pre
sented for calculations based on the macro-averaged and weighted 

Fig. 5. Comparison between manually labeled ground truth (turquoise), Canny Edge detection (pink) and HED-Unet (blue) results on unseen test scenes located at 
(a) Sulzenauferner, Zuckerhütl (b,c) Langtaler Ferner, Hochwilde (d) Schaltenkees, Großvenediger, and (e) Taschachferner, Wildspitze. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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approach.
The HED-UNet F1-score results for the weighted approach are higher 

than for the macro-averaged approach with 78.5 % and 98.4 %, 
respectively. This can be attributed to higher accuracies for the back
ground class creating the majority of pixels and creating the class 
imbalance. When considering the macro-averaged approach (here false 
classifications for the crevasses are especially penalized) it is apparent 
that the precision is lower with 73.7 % compared to the recall with 86.3 
%. In practice, this signifies that with a high recall, it is guaranteed that 
crevasses are mapped and not overlooked by our approach. This ensures 
that crevasse zones that present a risk to mountaineers are accurately 
mapped and enable the planning of safe routes. In contrast, the lower 
precision indicates the existence of false positive classifications, which 
can be attributed primarily to the misclassification of meltwater chan
nels and debris on the glacier as crevasse. For mountaineers, this could 
result in the avoidance of direct routes and the planning of longer routes 
than necessary. The overall accuracy is high with 98.2 % for the Canny 
Edge detection and 98.3 % for the HED-UNet result. But as overall ac
curacy is misleading and inflating on imbalanced datasets, this accuracy 
measure should not be given too much attention and is rather listed for 
completeness. The balanced accuracy, considering class imbalance and 
also true negative classifications in contrast to the F1-score, is 68.0 % for 
Canny Edge detection and 86.2 % for the HED-UNet approach. The re
sults demonstrate that the HED-UNet model is capable of accurately 
detecting crevasses, despite the presence of class imbalance and 
considering specificity. A high specificity demonstrates that the number 
of false positives (areas classified wrongly as crevasse) is very little and 
the classification of true negatives (glacier ice and surrounding correctly 
classified as no crevasse). This indicates that the mapped crevasse map 
only in very few cases leads to the planning of longer routes. Finally, the 
Cohen’s Kappa results in a fair agreement for the Canny Edge detector 
with 0.38 and a moderate agreement for the HED-UNet approach with 
0.57. Hereafter, the possibility of the agreement occurring by chance is 
high for the Canny Edge detector but lower for the HED-UNet approach. 
The statistical measures clearly demonstrate that the HED-UNet 
approach produces on average more accurate results. A comparison of 
the accuracies for the individual test scenes reveals significant discrep
ancies in performance, with the HED approach consistently demon
strating superior stability in balanced accuracy with 91–79 % compared 
to 89–58 % for the Canny Edge detector (see Table 2). Highest accu
racies are achieved over bare ice with wide crevasses with both ap
proaches as demonstrated for the region around Zuckerhütl at the 
Sulzenauferner (see Fig. 5a). The Canny Edge and ground truth labels 
are almost identical, as the ground truth was generated from the Canny 
Edge detections in areas of optimal performance. In addition, the HED- 
UNet identifies smaller linear features on bare ice as crevasse resulting in 
a slightly lower precision and over prediction. For the Langental Ferner 

at Hochwilde the accuracy is lowest for both approaches whereby the 
balanced accuracy for the HED-UNet (78.9 %) is significantly higher 
than for the Canny Edge (57.6 %) detector. This can be attributed to this 
specific test region where only few crevasses are present (see Fig. 5b) 
and only partly detected by the Canny Edge detector. Additionally, the 
test scene includes many small debris islands on snow where their 
boundary is always miss-classified by the Canny Edge approach but only 
in few cases by the HED-UNet (see Fig. 5c). When it comes to snow 
covered crevasses and icefalls the Canny Edge detector misses many 
crevasses due to the low image contrast. The considerably higher ac
curacy at Großvenediger with the HED-UNet (83.6 %) compared to the 
Canny Edge detector (60.3 %) underlines this as well as Fig. 5d. Superior 
performance is also achieved over bare ice with low contrast where the 
HED-UNet detects also smaller crevasses whereas the Canny Edge de
tector misses most of them (see Fig. 5e) on the Taschachferner close to 
the Wildspitze with a recall of 66.0 % versus 91.0 % for the HED-UNet.

Based on these accuracy metrics our approach produces comparable 
or even improved accuracies with existing studies. It should be 
mentioned here that these studies specialized in fracture and crevasse 
detection in the Antarctic and used different data sets (optical, SAR, 
lower spatial resolution) and accuracy metrics. Compared to the NeRD 
method, the HED-UNet produces comparable values for macro averaged 
precision and recall which is between 77 %-80 % for the NeRD method 
and 73 %-86 % for our approach. The macro averaged F1-score is 
comparable for the NeRD method (NeRD 80 % vs HED-UNet 79 %) and 
the accuracy of our approach is slightly higher with 98 % compared to 
95 % for NeRD (Izeboud and Lhermitte, 2023). Surawy-Stepney et al. 
(2023a) only state the accuracies on the validation dataset in the 
training graph on the basic metrics such as recall, precision and F1-score 
(not macro averaged). These accuracies are outperformed by our 
approach for a recall of 81 % versus 98 %, precision of 78 % versus 99 % 
and an F1-score of 80 % versus 98 %, respectively. Zhao et al. (2022) test 
their approach on 10 visually interpreted SAR scenes producing slightly 
lower accuracies on average than this study with a precision of 81 % 
compared to 99 %, a recall of 73 % versus 98 % and an F1-score of 76 % 
compared to 98 %. The overall accuracy is also lower with 84 % 
compared to 98 % presented in this study (Zhao et al., 2022). These 
higher accuracies indicate the advantage of using edge detection 
simultaneously with segmentation than U-Net based segmentation 
alone. For sure, a more in-depth accuracy assessment based on a com
mon benchmark dataset would be desirable to produce directly com
parable measurements.

3.4. Limitations and challenges

Our novel developed crevasse detection approach outperforms 
existing approaches and can minimize manual mapping efforts 

Table 2 
Individual accuracy metrics for the Canny Edge benchmark and the HED-UNet results separately for each test scene with different crevasse types and snow conditions. 
High and low values are in bold.

No. Test Scene Area Crevasse Type Conditions

1 dop_2222_51_2019 Kräulspitze transverse crevasses bare ice, partly snow filled crevasses
2 dop_2221-42_2019 Zuckerhütl longitudinal & marginal crevasses bare ice, debris
3 dop_1920-32_2020 Wildspitze transverse & marginal crevasses bare ice, melt water channel
4 dop_3822-06_2022 Großvenediger transverse crevasses & icefall snow covered, low contrast
5 dop_2119-59_2020 Hochwilde crossed crevasses snow covered/filled, debris on snow
6 dop_1920-59_2020 Weißseespitze marginal crevasses bare ice, debris on bare ice

No. Canny Edge (macro) HED-Unet (macro)

F1 Precision Recall Bal. Acc. Kappa F1 Precision Recall Bal. Acc. Kappa

1 62.5 61.1 64.5 64.5 25.0 78.3 73.4 85.9 85.9 56.6
2 85.6 82.8 89.0 89.0 71.2 84.1 79.9 89.8 89.8 68.3
3 70.8 80.0 66.0 66.0 41.6 80.8 74.8 91.0 91.0 61.7
4 64.4 76.3 60.3 60.3 29.3 78.4 75.3 82.6 82.6 56.8
5 54.0 52.7 57.6 57.6 8.0 71.9 67.6 78.9 78.9 43.7
6 77.3 78.7 76.1 76.1 54.7 77.4 71.2 89.3 89.3 54.9
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significantly. For example, digitizing crevasses for one scene over 
Großvenediger took 24 h whereas the HED-UNet inference took one 
minute for the same area. Nevertheless, the high-resolution crevasse 
location information derived with the HED-Unet approach requires 
cartographic editing before it can be integrated into map products. The 
lower precision indicates the presents of false positive detections which 
could lead to unnecessary avoidance of specific areas. False positive 
detections can be observed over singular rocks on bare ice, man-made 
structures such as snow farms and ascent routes, elongated debris on 
snow, snow filled meltwater channels, and randklufts located in shaded 
areas (see Fig. 6). Even though, these false classifications exist, they only 
account for a small proportion. Especially, man-made structures such as 
snow farms and ascent paths as well as snow filled meltwater channels 
were not included in the training dataset as they are extremely rare in 
comparison to crevasses. Consequently, these features could not be 
learned during the training process. Whereas for modelers these false 
positive predictions may have little effects, for mountaineers and field 
researcher these can have large impacts especially when parts of a 
common ascent route are classified as crevasse. Hence, cartographic 
editing will still be required to provide trustworthy maps. But the 
crevasse mapping process itself is speeded up significantly with the 
crevasse dataset presented here.

To improve the automated crevasse detection over areas shown in 
Fig. 6 additional training data should be included focusing on training 
examples including ascent routes, snow farms and snow filled melt 
water channels. As these feature occur very rarely an option could be to 
create synthetically produced training data for such features (Hoeser 
and Kuenzer, 2022).

A limitation of mapping crevasses from optical remote sensing im
agery is the ability to only map crevasses that are visible when snow-free 
during the ablation season, or very wide being visible despite snow 
cover. Even though we can accurately map visible crevasses very up-to- 
date there still remains the probability of missed crevasses covered with 
snow bridges year-round. Mapping hidden crevasses below snow would 
require ground penetrating radar surveys or airborne long-wave radar 
data penetrating deep into the snowpack. As these data are not available 

on a larger scale, we provide the best possible large-scale crevasse 
mapping product from optical data to this day. Furthermore, knowing 
that the majority of crevasse falls occur either in winter or in the summer 
months (July, August) (Klocker et al., 2022), the crevasse maps pro
duced from the images taken in September should include the most 
dangerous crevasse zones for mountaineers. Especially, the more severe 
and deeper crevasse falls happening in winter can be avoided with the 
new crevasse maps presented here.

3.5. Spatial transferability of the crevasse mapping approach

To test the transferability of our approach, we have produced 
crevasse maps for the Großglockner region located at the border be
tween Tirol and Kärnten, the Bernina Group in Switzerland, and the 
Ortler mountain in South Tyrol. This required slight modifications of the 
above described approach from Fig. 2. For Großglockner, the Austrian 
digital landscape model dataset (BEV, 2024) was used without manual 
edits and additional orthophotos were downloaded from the Land 
Kärnten with a different bit-depth. For Switzerland and Italy we used the 
glacier boundaries provided from the glacier inventory of the Alps for 
the years 2015/16 (Paul et al., 2020). We used aerial imagery with a 
spatial resolution of 10 cm of the year 2022 for the Bernina region 
(Swisstopo, 2022) and orthophotos with a resolution of 20 cm of the 
year 2023 for the Ortler (Autonome Provinz Bozen − Südtirol, 2023). 
We present the results of the inference run in Fig. 7 for Großglockner and 
in Fig. 8 for Piz Palü and Ortler. As no ground truth labels are available 
for these regions we only can provide a visual assessment of the trans
ferability results. For Großglockner, crevasses of all different sizes and 
shapes are detected very accurately even if located in shaded areas or 
building circular shapes at the Pasterze which were not represented in 
the training data. In the Bernina Group crevasses are detected in most 
cases even over medial moraines. In the very steep icefall regions, some 
crevasse boundaries were missed due to high brightness and little 
contrast in the image. Additionally, the ascent route was wrongly 
detected due to the well-trodden path leading up to Piz Palü. Around 
Ortler, even crevasses covered by heavy debris were detected as well as 

Fig. 6. False positive classifications can occur over (a) isolated rocks on the glacier, (b) man-made snow farms, (c) traces of an ascent route, (d) elongated accu
mulations of debris, (e) snow filled melt water channels, and (f) a randkluft in shaded area.
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crevasses at the steep and receding glacier tongues. For both regions, the 
not up-to-date glacier boundaries lead to false classifications in areas 
where the glacier retreated and only debris is left.

These results highlight the large-scale applicability of our approach 
and the potential for providing crevasse maps on country scale and 
beyond if high-resolution remote sensing imagery is available. For 
example, in Austria new orthophotos are acquired in regular time in
tervals and would allow updates every three to four years. In the face of 
climate change, it is crucial to ensure the use of up-to-date glacier 

boundary masks to prevent misclassifications in areas experiencing 
rapid glacier retreat.

3.6. Future directions for crevasse mapping

Automated crevasse mapping is just at the beginning, but it will 
undoubtedly evolve in tandem with advances in computer vision and 
deep learning-based image processing techniques but also the improved 
availability of high-resolution remote sensing imagery. Improved open 

Fig. 7. Glacier crevasse map for the mountain range around Großglockner with Pasterze in the middle of the image (f). (a) Ödenwinkelkees, (b) Oberster Pas
terzenboden, (c) Fruschnitzkees, (d) Karlingerkees, and (e) below Schattseitköpfl, Obserster Pasterzenboden. Base map: basemap.at.

Fig. 8. Transferability test for the Pers Glacier below Piz Palü (a) and Ortler Ferner at the Ortler (b). Enlarged images around Piz Palü show crevasse detected at a 
medial moraine (c), crossed crevasses (d), icefall with ascent route (e), and wrongly classified debris due to the outdated glacier mask (f). For Ortler, enlarged views 
show debris covered crevasses (g), crevasses at a steep receding glacier tongue (h), crevasses within a debris covered glacier (i), and wrongly classified debris and 
snow patches due to outdated glacier mask.
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access availability of high-resolution imagery over mountain regions 
would enable large-scale crevasse mapping for other mountain ranges as 
well as multi-temporal analysis of crevasse formation. For sure, addi
tional training imagery would be required for areas with a large amount 
of debris covered glaciers like the Himalayas. In addition, accurate and 
up to date glacier boundaries are required for the approach presented 
here. There are already good efforts to provide these on a global scale 
(RGI Consortium, 2023) but might not be timely enough for rapidly 
retreating glaciers due to climate change. False positive rates could be 
reduced by experimenting on advanced network designs such as 
cascading CNNs (Elharrouss et al., 2023), networks focusing on even 
more precise edge detections (Soria et al., 2023), and taking into ac
count uncertainties in edge annotations (Zhou et al., 2023). It would be 
beneficial for future research to consider the possibility of detecting 
different crevasse types which can be beneficial for a better under
standing of glacier dynamics (Li et al., 2024; Zhao et al., 2022). 
Including further data sources such as airborne LiDAR systems, laser 
altimeters (Li et al., 2024), ground penetrating radar (Walker and Ray, 
2019) and holographic SAR tomography (Ponce et al., 2016) would be 
beneficial to estimate crevasse volume and to detect crevasses covered 
by snow bridges being invisible in optical remote sensing data.

4. Conclusions

For the first time, this study presents an automated crevasse mapping 
approach for mountain glaciers with potential for large-scale applica
tions. Based on airborne optical remote sensing data, we trained a 
multitask deep learning neural network able to perform edge detection 
and segmentation tasks simultaneously. The model robustly detects 
glacier crevasses of different shapes within different illumination con
ditions. Large-scale applicability of our approach was demonstrated by 
creating high-resolution crevasse maps for the entire Oetztal and Stubai 
Alps. Applying our model for the Großglockner, Piz Palü and Ortler re
gions proves spatial transferability of the presented approach and po
tential large-scale applications for the future. The here presented 
datasets can be integrated into hiking maps and digital cartography tools 
to provide mountaineers and field researcher with up-to-date crevasse 
information. In addition to allowing safe routing on a glacier, crevasse 
maps indicate the distribution of stress within the ice mass and provide 
additional information for modelling internal ice dynamics and basal 
topography.
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