elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Integrating post-event very high resolution SAR imagery and machine learning for building-level earthquake damage assessment

Macchiarulo, Valentina und Giardina, Giorgia und Milillo, Pietro und Aktas, Yasemin D. und Whitworth, Michael R. Z. (2024) Integrating post-event very high resolution SAR imagery and machine learning for building-level earthquake damage assessment. Bulletin of Earthquake Engineering. Springer. doi: 10.1007/s10518-024-01877-1. ISSN 1570-761X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Kurzfassung

Earthquakes have devastating effects on densely urbanised regions, requiring rapid and extensive damage assessment to guide resource allocation and recovery efforts. Traditional damage assessment is time-consuming, resource-intensive, and faces challenges in covering vast affected areas, often limiting timely decision-making. Space-borne synthetic aperture radars (SAR) have gained attention for their all-weather and day-night imaging capabilities. These advantages, coupled with wide coverage, short revisits and very high resolution (VHR), have created opportunities for using SAR data in disaster response. However, most SAR studies for post-earthquake damage assessment rely on change detection methods using pre-event SAR images, which are often unavailable in operational scenarios. Limited studies using solely post-event SAR data primarily concentrate on city-block-level damage assessment, thus not fully exploiting the VHR SAR potential. This paper presents a novel method integrating solely post-event VHR SAR imagery and machine learning (ML) for regional-scale post-earthquake damage assessment at the individual building-level. We first used supervised learning on case-specific datasets, and then introduced a combined learning approach, incorporating inventories from multiple case studies to assess generalisation. Finally, the ML model was tested on unseen study areas, to evaluate its flexibility in unfamiliar contexts. The method was implemented using datasets collected during the Earthquake Engineering Field Investigation Team (EEFIT) reconnaissance missions following the 2021 Nippes earthquake and the 2023 Kahramanmaraş earthquake sequence. The results demonstrate the method’s ability to classify standing and collapsed buildings, achieving up to 72% overall accuracy on unseen regions. The proposed method has potential for future disaster assessments, thereby contributing to more effective earthquake management strategies.

elib-URL des Eintrags:https://elib.dlr.de/209366/
Dokumentart:Zeitschriftenbeitrag
Titel:Integrating post-event very high resolution SAR imagery and machine learning for building-level earthquake damage assessment
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Macchiarulo, ValentinaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Giardina, GiorgiaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Milillo, Pietropietro.milillo (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Aktas, Yasemin D.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Whitworth, Michael R. Z.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:9 März 2024
Erschienen in:Bulletin of Earthquake Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s10518-024-01877-1
Verlag:Springer
ISSN:1570-761X
Status:veröffentlicht
Stichwörter:SAR, Earthquake, machine learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - TerraSAR/TanDEM
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme
Hinterlegt von: Rizzoli, Paola
Hinterlegt am:02 Dez 2024 11:01
Letzte Änderung:02 Dez 2024 11:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.