Schmidt, Olga und Schwarz, Egbert und Krause, Detmar (2024) Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods. In: Proceedings of the MARESEC 2024, Seiten 1-7. Zenodo. European Workshop on Maritime Systems Resilience and Security - MARESEC 2024, 2024-06-06 - 2024-06-07, Bremerhaven, Germany - online. doi: 10.5281/zenodo.14214876.
PDF
618kB |
Offizielle URL: https://zenodo.org/records/14214876
Kurzfassung
Remote sensing can be used for oil spill detection. To minimize the impact of oil pollution on the ecosystems, it is imperative that oil spills are detected at the earliest possible stage in order that the relevant monitoring frameworks can be put in place and appropriate response measures initiated. This paper presents two different approaches for oil spill detection on optical satellite imagery from the Landsat-8 and Landsat-9 satellites using deep learning techniques. This comprises the application of a (fully connected) deep neural network (DNN) and a convolutional neural network (CNN) in the type of a U-Net architecture. The models were developed to recognise and classify patterns of oil spills against the complex background of marine and coastal environment. Consequently, the performance of the models is evaluated and their efficiency demonstrated on different datasets. The experimental results indicate usability of the analysed methods. This study is based on a limited amount of manually labelled training data and serves to validate the potential of deep learning based oil spill detection on optical satellite remote sensing images.
elib-URL des Eintrags: | https://elib.dlr.de/209344/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Oil Spill Detection on Landsat-8/9 Images Based on Deep Learning Methods | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 25 November 2024 | ||||||||||||||||
Erschienen in: | Proceedings of the MARESEC 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.5281/zenodo.14214876 | ||||||||||||||||
Seitenbereich: | Seiten 1-7 | ||||||||||||||||
Verlag: | Zenodo | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Oil Spill Detection, Optical Remote Sensing, Deep Learning, DNN, CNN | ||||||||||||||||
Veranstaltungstitel: | European Workshop on Maritime Systems Resilience and Security - MARESEC 2024 | ||||||||||||||||
Veranstaltungsort: | Bremerhaven, Germany - online | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 6 Juni 2024 | ||||||||||||||||
Veranstaltungsende: | 7 Juni 2024 | ||||||||||||||||
Veranstalter : | German Aerospace Center - DLR e.V. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment | ||||||||||||||||
Hinterlegt von: | Schmidt, Olga | ||||||||||||||||
Hinterlegt am: | 29 Nov 2024 11:17 | ||||||||||||||||
Letzte Änderung: | 29 Nov 2024 11:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags