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 Abstract—Remote sensing can be used for oil spill detection. 

To minimize the impact of oil pollution on the ecosystems, it is 

imperative that oil spills are detected at the earliest possible stage 

in order that the relevant monitoring frameworks can be put in 

place and appropriate response measures initiated.  

This paper presents two different approaches for oil spill detection 

on optical satellite imagery from the Landsat-8 and Landsat-9 

satellites using deep learning techniques. This comprises the 

application of a (fully connected) deep neural network (DNN) and 

a convolutional neural network (CNN) in the type of a U-Net 

architecture. The models were developed to recognise and classify 

patterns of oil spills against the complex background of marine 

and coastal environment. Consequently, the performance of the 

models is evaluated and their efficiency demonstrated on different 

datasets. The experimental results indicate usability of the 

analysed methods. This study is based on a limited amount of 

manually labelled training data and serves to validate the potential 

of deep learning  based oil spill detection on optical satellite remote 

sensing images. 

 Index terms—Oil Spill Detection, Optical Remote Sensing, 

Deep Learning, DNN, CNN. 

I. INTRODUCTION 

Oil spills represent a serious threat to the marine and coastal 
environment and pose a danger to human health. The utilisation 
of remote sensing technology enables a timely and accurate 
detection of oil spills, due to its capacity to monitor large marine 
regions. This can help to prevent pollution spread and support 
clean-up operations after accidents or deliberate discharges to 
minimize the negative impacts on the environment as well as to 
identify the polluter. Satellite images captured by Synthetic 
Aperture Radar (SAR) sensors are widely used for oil spill 
detection [1]. Nevertheless, the incorporation of optical 
observation capabilities enables the reduction in the time 
required for the repeated monitoring of the same sea area, 
thereby enhancing temporal resolution. In comparison to optical 
sensors, active SAR sensors are independent of the daytime and 
the existence of clouds, dust or smoke. The presence of oil on 
the surface of the water results in a smoother surface, which 
appears darker than water on SAR images. Algal blooms and 
regions with very low wind speeds appear darker than water as 
well. In this particular case it is already a challenge to distinguish 
between oil spills and these so called “look-alikes”. Optical 

sensors acquire the reflected radiation from the surface in 
several spectral bands. Oil changes the spectral characteristics 
of water. The spectral analysis not only provides some 
information about the properties of oil spills for each spectral 
band but can also provide more information, such as oil 
thickness or type of oil. Nevertheless, similar reflectance like oil 
may be shown by thin clouds, cloud shadows, dust, suspended 
sediments or areas characterised by shallow water. On optical 
images oil spills can appear darker (negative contrast) or 
brighter (positive contrast) than the surrounding water. The 
contrast variation is depending on the position of the sun and the 
sensor. Additionally, there is a high variability of the contrast 
intensity which is influenced by the optical properties of the oil 
(oil type, oil thickness), the scattering of the sea water, the sea 
state (depending mostly by the wind patterns), the depth of the 
sea and the bathymetry. Furthermore, the reflectance of oil spills 
and water is similar across all spectral bands. However, the 
visibility of oil spills can be enhanced through the application of 
image processing techniques [2]. 

The objective of this study is to identify the optimal deep 
learning approach for the automatic oil spill detection on images 
captured by the Landsat-8 and Landsat-9 optical satellites. 
Therefore, a deep neural network (DNN) and a convolutional 
neural network (CNN) in the type of a U-Net architecture are 
trained. The two networks under consideration utilize different 
techniques for handling training data. A DNN is trained pixel by 
pixel ignoring the spatial component, unlike the U-Net, but its 
implementation is quite simple. The U-Net network is able to 
use the localization and context information at the same time. 
Several published studies, for example [3] and [4], have shown 
that the performance of the U-Net architectures is convincing 
even if only a sparse training dataset is available. In this study, 
the training was done by using three independent indices 
calculated from specific spectral bands. The following sections 
give an overview of the methods and data used and some results 
obtained. 

II. METHODS AND DATA 

A. Workflow 

Figure 1 gives an overview of the implemented workflow 

employed for training the DNN and the U-Net for oil spill 

detection. The Landsat-8/9 data, described in section II.B, were 
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subjected to manual examination to ascertain their oil content. 

Data, on which oil could be identified, was indexed in a data 

cube (Open Data Cube, ODC) [5] and, afterwards, pre-

processed to be incorporated into the model training process. 

The pre-processing consists of the generation of the train images 

and the preparation of corresponding oil masks, which together 

form the training dataset. A comprehensive overview is 

provided in section II.C. Subsequently, the dataset was split into 

three independent datasets: the training data (80 %), the 

validation data (10 %) and the test data (10 %). During model 

training process, the training data were used to train two models 

while the validation data was used to fine-tune the 

hyperparameters. Due to the occurrence of numerous false 

positive detections, especially caused by cloud shadows, three 

masks (no-data mask, cloud / cloud shadow mask and land 

mask), were employed in the post-processing step. Finally, the 

test data were used to evaluate the performance of the models. 

 

Figure 1 Overview of the implemented workflow for oil spill detection. 

B. Landsat-8/9 data 

The Landsat program represents a collaboration between 

National Aeronautics and Space Administration (NASA) and 

United States Geological Survey (USGS) which has been in 

operation since 1972. The two currently active satellites 

Landsat-8 (launched in 2013) and the most recent Landsat-9 

(launched in 2021) are equipped with the Operational Land 

Imager (OLI/OLI-2) instrument. Each satellite acquires data in 

accordance with its respective Long Term Acquisition Plan 

(LTAP). OLI/OLI-2 is a multispectral sensor that measures the 

Earth’s surface in nine bands, comprising visible, near-infrared 

and shortwave-infrared spectra. The spatial resolution is 30 

meters for bands 1-7 and 9 and 15 meters for band 8 

(panchromatic) along a 185 km swath. The resolution of each 

single frame image is ≈ 7 600 x 7 600 pixels. Both satellites 

cover each Landsat scene area once in 16 days. Due to the offset 

between the two satellite orbits, a repeat cycle of 8 days is 

possible [6], [7]. The data can be downloaded free of charge 

from the EarthExplorer website [8]. 

C. Training data 

In this study, the Landsat-8/9 Collection 2 Level-1 data 

products, downloaded from the USGS catalogue, are used. 

These are calibrated scaled digital numbers (DN) that are 

influenced by the scattering and absorption in the atmosphere. 

In order to reduce this influence, an atmospheric correction was 

applied using the ATCOR software [9]. At the beginning of this 

study, it was discovered that the selection of band combinations 

based on specific spectral bands is more effective for oil spill 

detection than the usage of individual bands directly. Based on 

this conclusion the combination of the Normalised Difference 

Oil Index (NDOI) (eq. (1)) [3], the Green-Shortwave Infrared 

Index (G-SWIR) (eq. (2)) (adapted from [10]) and the index 

CaBGS (eq. (3)) (adopted to Landsat images from [11]) were 

chosen to create the training dataset. The NDOI is defined as 

the ratio of the difference and the sum of the surface reflectance 

values for the green band (ρλ(green)) and the near infrared band 

(ρλ(NIR)). The index G-SWIR is based on the ratio of the 

difference and the sum of the surface reflectance values for the 

green band (ρλ(green)) and the shortwave infrared band 

(ρλ(SWIR2)). Both indices have shown to enhance the visual 

differences between oil slicks and the surrounding waters. 

CaBGS is a combination of the surface reflectance values of the 

spectral bands coastal aerosol (ρλ(coastal_aerosol)), blue 

(ρλ(blue)), green (ρλ(green)) and SWIR2 (ρλ(SWIR2)). This 

value shows an ability to better distinguish oil slicks from look-

alikes in shallow water areas. Figure 2 shows the result of each 

of these three indices individually. The contrast between oil and 

the surrounding water is quite low on the coastal aerosol band, 

the oil spill is difficult to identify. In contrast, the visibility of 

the oil spill is very high on each chosen index.  

NDOI =
ρλ(green)−ρλ(NIR)

ρλ(green)+ρλ(NIR)
                           (1) 

G‑SWIR =
ρλ(green) −ρλ(SWIR2)

ρλ(green)+ρλ(SWIR2)
                     (2) 

CaBGS =
ρλ(coastal_aerosol)+ρλ(blue)

ρλ(green)+ρλ(SWIR2)
                  (3) 

 

Figure 2. Coastal aerosol band (top) and the individual indices NDOI, 

G-SWIR and CaBGS (lower row) showing a long and narrow oil spill 

behind a ship, presented in patches of the size of 128 x 128 pixels. 
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In the current study, the dataset used to train the model includes 

26 Landsat-8/9 images containing oil spills. In order to test 

whether it is possible to train a model that is applicable to 

different geographical areas no spatial restriction was made. 

This is the reason why the selected images were acquired over 

different regions of the North Sea, Baltic Sea, Mediterranean 

Sea, Red Sea, South China Sea and in the Gulf of Guinea. 

Binary oil masks were generated for the selected Landsat images 

to be used in the model training. Initially, the masking was done 

manually using the VisualAnalyst software [12] by drawing a 

polygon around each individual oil slick. Subsequently, a 

segmentation method based on the NDOI, G-SWIR and the 

pixel values of the coastal aerosol band was implemented. As 

mentioned above, these two indices were chosen because of 

their ability to enhance the visual distinction between oil spills 

and the surrounding water. Furthermore, the coastal aerosol 

band was used to remove very dark and very bright pixel values 

and to enhance the contrast between oil slicks and water. To 

distinguish the oil pixels from the surrounding water pixels, 

separate thresholds were introduced for each of these three 

values. Both methods depend on the image quality and the 

contrast between oil slicks and the surrounding water. Especially 

different illumination around the oil spills is challenging issue 

as it has a significant influence on the pixel values. This meant 

that individual thresholds had to be defined for each Landsat 

image, or even for each separate oil slick. Due to these 

challenges, the process of oil mask generation took a lot of time.  

The precise creation of the oil masks is crucial for the model 

training, as any pixel not marked as an oil pixel (pixel value 1) 

is automatically considered as a non-oil pixel (pixel value 0). 

This includes pixels of the land surface, clouds, cloud shadows 

and no-data values (black border outside the Landsat image). 

The no-data areas all have the same pixel value, while the cloud 

pixel values vary in the high range and the land surface values 

can be low or high depending on the surface characteristics. This 

would lead to a high variability of pixel values for this label and 

negatively influence the model training. To exclude these areas 

from training, three additional masks were applied in addition to 

the oil mask: the no-data mask, the cloud/cloud shadow mask, 

and the land mask. The no-data pixels were removed using the 

blue band, the land areas were excluded using OpenStreetMap 

[13] and clouds and cloud shadows were masked using a 

combination of the Landsat QA band and the UKIS Cloud 

Shadow MASK (ukis-csmask) [14].  

The handling of these additional masks was different depending 

on the deep learning method used. In the case of the DNN model 

training, these pixels were excluded from the training. 

Moreover, an extra buffer was applied to make sure that, for 

example, small clouds or cloud shadows, that were not excluded 

by the masking algorithm, but were close to detected ones, were 

excluded from this label too. Since the training of a DNN model 

is done pixel by pixel, the applied masking allowed to clean the 

training dataset with respect to the areas to be excluded. From 

the remaining dataset, 130 411 pixels were chosen randomly. 

This number corresponds to the number of oil pixels available 

in the binary oil masks and was chosen to obtain a balanced 

training dataset.  

The U-Net utilises a spatial component for training. For this 

reason, the pixels corresponding to the three masks described 

were summarised in a new training class, defined with a pixel 

value of 2, and excluded from the model training. Before 

training the U-Net, the Landsat images were cropped into        

128 x 128 pixels patches. In order to make the model more 

robust, Keras [15] ImageDataGenerator class was used. 

Horizontal and vertical flips and rotation were applied on each 

training image on the fly while the model was being trained. This 

class creates new variations of the images at each epoch. The 

original images are replaced by the transformed ones. For the 

purpose of improving the balancing of oil pixels/non-oil pixels 

in the training dataset, patches that contain less than 5 % of oil 

pixels were removed from the dataset. However, the resulting 

dataset is still unbalanced: 91 962 oil pixels and 521 677 non-oil 

pixels. Here, the lower number of available oil pixels in 

comparison to the number used for DNN indicates that 38 449 

oil pixels were removed because they were less than 5 % of the 

patch size. Table 1 summarizes the available pixel numbers used 

for training.  

Table 1 

AVAILABLE NUMBER OF OIL AND NON-OIL PIXELS FOR THE DNN AND 

THE U-NET 

Pixel 
Number of pixels,  

DNN 

Number of pixels,  

U-Net (128 x 128px) 

Oil 130 411 91 962 

Non-Oil 130 411 521 677 

 → balanced → imbalanced 

 

Finally, each chosen pixel (DNN) and each pixel from the 

cropped patch (U-Net) of this edited oil mask, respectively, are 

assigned to the corresponding calculated three indices NDOI,  

G-SWIR and CaBGS. These data were then used to train the 

different neural networks, which architectures are described in 

the following two sections. Both networks were implemented 

using Keras, which is a high-level API for TensorFlow and one 

of the most widely used libraries for deep learning in Python. 

D. Deep Neural Network (DNN) 

A fully connected DNN consists of an input layer, several 

hidden layers and an output layer. The layers contain nodes 

(neurons) and edges. The edges describe the linear and non-

linear relationships between each node of one layer and all 

nodes of the following layer. The linear relationships are based 

on weights and biases. An activation function is applied after 

each hidden layer, which allows very complex non-linear 

problems to be handled. The DNN includes an iterative update 

of the weights according to a backpropagation, where the 

gradient descent optimization method is used to minimize the 

loss using a loss function [16], [17]. The aim of this study is to 

find the optimal combination of weights and biases in the 
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hidden layers of the DNN that allows a reliable discrimination 

between the oil pixels and the non-oil pixels based on the three 

indices used. As shown in Figure 3, the architecture of the 

network implemented for this study consists of three nodes in 

the input layer corresponding to the selected indices NDOI,     

G-SWIR and CaBGS, 80 nodes in each of the six hidden layers 

and two nodes in the output layer (binary oil mask). The 

selection of these values in the hidden layers section is the result 

of several tests to find the highest accuracy. The network was 

defined as a sequential model of the Keras library. In order to 

optimize the model, the adaptive moment estimation (Adam) 

algorithm was chosen. This is the most widely used optimizer. 

The errors were minimized using the binary cross-entropy as it 

is a binary classification. The rectified liner unit (ReLU) 

activation function was taken for the hidden layers. The final 

classification was done using the sigmoid activation function 

because the output is either 0 or 1 [18]. The best model 

performance could be reached after 300 epochs. The summary 

of the selected hyperparameters is given in Table 2.  

 

Figure 3. Model architecture of the used Deep Neural Network (DNN). 

Table 2 

SELECTED HYPERPARAMETERS FOR THE DNN AND THE U-NET 

 DNN U-Net 

Activation 

function 
ReLU ReLU 

Optimizer Adam Adam 

Loss function 
Binary     

cross-entropy 

Sparse categorical 

cross-entropy 

Classification 

rule 
Sigmoid Softmax 

Number of 

epochs 
300 50 

 

E. U-Net (Convolutional Neural Network, CNN) 

In addition to the DNN described above, a CNN model in the 

type of a U-Net architecture [19] was trained in the study to 

determine which model is more suitable for detecting oil spills. 

The U-Net architecture, shown in Figure 4, consists of two 

parts: the contracting path (encoder) and the expanding path 

(decoder). While the contracting path captures the context of an 

image (feature extraction), the expanding path enables precise 

localization of containing object. The contracting path is a 

typical convolutional neural network that contains a collection 

of convolutional layers and “max-pooling” layers that gradually 

reduces the spatial resolution of the input image (down-

sampling) and increases the number of features in each layer. 

The expanding path is the mirrored part of the contracting path: 

the spatial resolution increases (up-sampling) and the number 

of features decreases gradually in each layer [20]. In this study, 

patches of the size of 128 x 128 pixels were used as input. Each 

patch is a combination of three layers corresponding to the 

calculated three indices NDOI, G-SWIR and CaBGS. The         

U-Net was instantiated using the model class (functional 

model) of the Keras library. The contracting path and the 

expanding path were built with four encoder blocks and four 

decoder blocks, respectively. Both paths are connected by skip 

connections where the features from the contracting path are 

used to improve the segmentation results in the corresponding 

expanding path. As already used for the DNN, the Adam 

algorithm and ReLU were chosen as optimizer and activation 

function, respectively. To minimize errors, it was decided to 

take the sparse categorical cross-entropy due to its ability to 

handle classes which should be excluded from the model 

training. As mentioned in section II.C, an additional class was 

created, comprising pixels of the land surface, clouds, cloud 

shadows and no-data values. This is also the reason for the 

usage of the softmax activation function as the final 

segmentation [18]. In this case, the best model performance 

could be reached after 50 epochs. These selected 

hyperparameters are summarised in the last column of Table 2. 

Due to the exclusion of this third class from the model training 

the output is a binary oil mask. 

III. RESULTS 

 In this section, some results obtained from the training of the 
two different deep learning models DNN and U-Net (CNN) for 
oil spill detection are presented. In order to evaluate the 
performance and effectiveness of both models a selection of 
several evaluation metrics [21] has been used. The evaluation 

Figure 4. Model architecture of the used U-Net (CNN), adopted from 

[19]. 
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metrics were applied to the test dataset, that was not included in 
the model training (see section II.A), by comparing the predicted 
oil spill pixels or patches with the pixels or patches from the 
manually generated binary oil spill masks (see section II.C) 
depending on the deep learning method used. The latter are 
subsequently referred to as the ground truth. In this study, a 
confusion matrix [22] was generated and precision, recall,       
F1-score and the intersection over union (IoU) [23] were 
determined. 

Figure 5a and Figure 5b show the confusion matrices determined 
for the DNN and the U-Net, respectively. The confusion matrix 
for the DNN shows that 93 % of the predicted oil pixels were 
also masked as oil in the manually labelled binary oil mask. Only 
7 % of the labelled oil pixels were missed and 8 % were 
incorrectly detected by the model. The prediction of the non-oil 
pixels matches 92 % with the non-oil pixels containing in the 
labelled binary oil mask. This indicates that the performance of 
the DNN is quite good with respect to the test data used. In 
contrast, the confusion matrix for the U-Net indicates a less 
favourable performance outcome: While 72 % of the predicted 
oil pixels were containing in the labelled binary oil mask, 28 % 
were missed and 8 % were wrongly detected. The prediction of 
labelled non-oil pixels behaves in similar way to the DNN: there 
is a match of 92 %. As already mentioned, unlike the DNN, the 
U-Net contains an additional class with the masked pixels, 
which are labelled as a third class during pre-processing. Thus, 
97 % of these pixels were correctly identified as non-oil, while 
3 % were erroneously classified as oil. As this third class was 
excluded from the model training, no predictions were made in 
this case. This is shown by values of “0.00” in the right column.  

 
Figure 5: Confusion matrix (a) determined for the used DNN and (b) 

determined for the used U-Net. 

Table 3 shows the values of the selected evaluation metrics 
precision, recall, F1-score and the IoU. The calculations were 
performed for the model outputs “oil” (1) and “non-oil” (0) for 
the DNN as well as for the U-Net. Since the additional third 
class, which contained the masked pixels, was excluded from 
the model training using U-Net, the evaluation metrics were not 
determined. All of these values are very high for the DNN. This 
confirms the conclusion made from the confusion matrix that the 
performance of the DNN regarding the test data is very good. 
The comparatively lower performance of the U-Net as 
evidenced in the confusion matrix is also reflected in the values 

of the evaluation metrics. These values are considerably lower 
except for the recall value of the non-oil pixels.  

Table 3 

EVALUATION METRICS FOR OIL (1) AND NON-OIL PIXELS (0) FOR THE 

DNN AND THE U-NET, RESPECTIVELY 

Method Output Precision Recall 
F1-

score 
IoU 

DNN 
0 0.93 0.92 0.93 

0.86 
1 0.92 0.93 0.93 

U-Net 
0 0.63 0.92 0.75 

0.52 
1 0.55 0.72 0.62 

 

In order to investigate the model performances on entire Landsat 
images, both deep learning algorithms were applied to several 
scenes. Figure 6, Figure 7 and Figure 8 show sections of selected 
examples of three Landsat images visualized as a false colour 
band combination. The image sections on the left side (a) serve 
to illustrate the oil spills. The geographical position of the 
respective image section within the overall Landsat scene is 
indicated in the top left-hand corner. The same image sections 
are displayed on the right-hand side (b), overlaid with the results 
of the deep learning method employed: The results of the DNN 
are displayed in blue and pink, while those of the U-Net in 
orange and pink. The pink-coloured areas indicate the regions 
where the two methods yielded overlapping results.  

The examples selected in Figure 6 and Figure 7 show parts of 
the spilled oil after the sinking of the oil tanker MT Princess 
Empress at the coast of Mindoro (Philippines) on 28 February 
2023, which was carrying 800 thousand liters of industrial fuel.  

The Landsat-9 image shown in Figure 6a and Figure 6b was 
acquired on 12 March 2023. The detections in Figure 6b show 
that the DNN has demonstrated a tendency to overestimate 
regions that are supposed to be oil, especially in areas along the 
coastline. In contrast, the U-Net has demonstrated a tendency to 
underestimate the extend of the spilled oil. In this particular case, 
the overlap between DNN and U-Net detections is quite 
substantial. The majority of the overlap corresponds to the 
potential oil spill, but there are also some detections in the 
northern image section which are assumed to be cloud shadows.  

 

Figure 6. Section of a false-colour Landsat-9 image acquired on             
12 March 2023 (a) showing the oil spill with the geographical position 
of the image section within the entire Landsat image and (b) extending 
by the oil spill detections of the DNN and the U-Net. 

(a) (b) 

(b) 

(a) 
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Figure 7. Section of a false-colour Landsat-8 image acquired on             

20 March 2023 (a) showing the oil spill with the geographical position 

of the image section within the entire Landsat image and (b) extending 

by the oil spill detections of the DNN and the U-Net. 

 

Figure 8. Section of a false-colour Landsat-8 image acquired on 13 July 

2017 (a) showing the oil spill with the geographical position of the 

image section within the entire Landsat image and (b) extending by the 

oil spill detections of the DNN and the U-Net. 

Figure 7a and Figure 7b shows a Landsat-8 image of the same 
region acquired eight days subsequent to the previous      
Landsat-9 image on 20 March 2023. It is evident that the oil spill 
has expanded in a north-west direction, with the spilled area 
increasing in size. As depicted in Figure 7b, in this particular 
case, both detection models underestimated the extent of the oil 
spill. The U-Net model has detected only the darkest regions of 
the potential oil spill, whereas only few oil slicks were detected 
by the DNN. The degree of overlap between the two methods in 
the present case was relatively limited.  

The third example showed in Figure 8 was acquired in the Baltic 
Sea on 13 July 2017. The oil spill detection using the DNN 
shows an overestimation of the two oil slicks and, additionally, 
some water pixels were falsely detected as oil. As can also be 
seen in the two other images, the U-Net model has 
underestimated the oil spill. Regarding this particular image 
section, no false detections were made.  

 

IV. CONCLUSION 

 This paper presents an approach to detect oil spills on 
Landsat-8/9 images using deep learning methods, specifically 
the DNN and the U-Net (CNN). The study is based on a limited 
number of labeled training data. The model training was done 

using the combination of three indices (Normalised Difference 
Oil Index (NDOI), the Green-Shortwave Infrared Index            
(G-SWIR) and the index CaBGS), that are based on specific 
spectral bands.  

The current results of the study indicate that the proposed 
methodology is, in principle, an effective approach. This 
conclusion is proven by the confusion matrices and the 
calculated evaluation metrics based on the test dataset. 

The trained DNN model demonstrated excellent performance in 
distinguishing between oil and non-oil samples, as evidenced by 
the high accuracy rates observed in the confusion matrix and the 
calculated evaluation metrics. However, the processing of 
additional Landsat images revealed a tendency for the model to 
overestimate oil contamination on one side. In some instances, 
the oil was not correctly detected. The evaluation metrics are 
determined using the test data. The test data probably did not 
contain pixels that are similar to oil spill pixels. That could be a 
reason why the number of false detections is low. Additionally, 
the training dataset did not contain any such pixels. That is the 
reason, why the model cannot distinguish properly between oil 
pixels and pixels of similar values.  

Despite the lower performance of the U-Net model in 
comparison to the DNN model according the confusion matrix 
and the evaluation metrics its application on additional Landsat 
images demonstrates superior performance in terms of accuracy. 
However, it tends to underestimate the extent of potential oil 
spills. The findings of the study indicate that the performance of 
the model is enhanced when the oil slicks exhibit a broad shape. 
In the training dataset, regions containing less than 5 % oil pixels 
were excluded from the training process, which had a 
discernible impact on the models' capacity to recognise narrow 
and small-scale structures. This is postulated to be a potential 
factor contributing to the inability of the models to recognise 
these structures. 

Both methods show too many false positive detections which are 
predominantly attributable to dark image areas, cloud shadows 
or suspended sediments. One potential explanation for this 
phenomenon is the limited training dataset. 

To reduce false detections and improve model performance, a 
significantly larger training dataset is required. Another 
approach is to train localized models for different geographical 
regions. Oil has a high spectral variability depending on several 
properties of the oil itself but of the environment conditions as 
well. In particular, the look-alikes caused by cloud shadows 
could be reduced by implementing an enhanced mask that is 
more precise in accounting for cloud shadows.  
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