Serafin Garcia, Sergio Alejandro und Nannini, Matteo und Hänsch, Ronny und Martin del Campo Becerra, Gustavo und Reigber, Andreas (2024) Deep-Learning-Based View Interpolation Toward Improved TomoSAR Focusing. IEEE Geoscience and Remote Sensing Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3424195. ISSN 1545-598X.
|
PDF
- Postprintversion (akzeptierte Manuskriptversion)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10586951
Kurzfassung
Synthetic aperture radar tomography (TomoSAR) uses several coregistered images from different perspectives to reconstruct a power spectrum pattern (PSP) perpendicular to the line of sight (PLOS), enabling the estimation of a 3-D representation of the area. Classical estimators exhibit ambiguities and other undesired effects that are stronger for sparser and smaller stacks. To mitigate the limitations arising from a restricted number of acquisitions, we propose using a deep neural network (NN) to synthesize artificial tracks (i.e., images not contained in the original stack). The presented method utilizes a convolutional NN with an encoder-decoder architecture. We evaluate the proposed approach on real TomoSAR data from an airborne campaign over a forest region. The view estimation improves the tomographic results, offering robustness to scenarios affected by temporal decorrelation, which other classical methods, such as cubic convolution (CC), do not provide.
| elib-URL des Eintrags: | https://elib.dlr.de/209293/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Deep-Learning-Based View Interpolation Toward Improved TomoSAR Focusing | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 5 Juli 2024 | ||||||||||||||||||||||||
| Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| DOI: | 10.1109/LGRS.2024.3424195 | ||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
| Name der Reihe: | 4014205 | ||||||||||||||||||||||||
| ISSN: | 1545-598X | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | TomoSAR, Deep Learning | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||||||
| Hinterlegt von: | Serafin Garcia, Sergio Alejandro | ||||||||||||||||||||||||
| Hinterlegt am: | 02 Dez 2024 11:12 | ||||||||||||||||||||||||
| Letzte Änderung: | 02 Dez 2024 11:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags