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Abstract—Synthetic Aperture Radar Tomography (TomoSAR)
uses several co-registered images from different perspectives to
reconstruct a power spectrum pattern perpendicular to the line
of sight, enabling the estimation of a 3D representation of the
area. Classical estimators exhibit ambiguities and other undesired
effects that are stronger for sparser and smaller stacks. To
mitigate the limitations arising from a restricted number of
acquisitions, we propose using a deep neural network to synthe-
size artificial tracks (i.e., images not contained in the original
stack). The presented method utilizes a convolutional neural
network with an encoder-decoder architecture. We evaluate the
proposed approach on real TomoSAR data from an airborne
campaign over a forest region. The view estimation improves the
tomographic results, offering robustness to scenarios affected by
temporal decorrelation, which other classical methods, like cubic
convolution, do not provide.

Index Terms—Deep Learning (DL), Interpolation, Synthetic
Aperture Radar (SAR), Tomography.

I. INTRODUCTION

YNTHETIC Aperture Radar Tomography (TomoSAR)

reconstructs the internal distribution of semi-transparent
targets (i.e., the Power Spectrum Pattern (PSP)) by using
a sparse collection of co-registered SAR acquisitions, so-
called TomoSAR stack. The SAR measurements are taken with
different baselines (BL) regarding a primary pass; thus, they
offer different perspectives of the area. The spatial diversity of
perspectives in the stack allows the synthesis of a resolution
in the direction Perpendicular to the Line Of Sight (PLOS),
which is usually achieved by the inversion of the stack [1].

The number and spatial distribution of tracks within the
stack have two main effects on the inversion. First, the
resolution of the retrieved PSP is inversely proportional to
the total BL span (called Dprops in Fig. 1) [1]. Second,
ambiguities caused by subsampling are inversely proportional
to the variance of BLs, depicted by d in Fig. 1 for regularly
spaced acquisitions [1]. Thus, making the TomoSAR stack
larger and denser increases the ambiguity rejection and the
resolution of the estimated tomograms.

In practice, each image in the tomographic stack is acquired
by different flights, making large stacks unpractical and ex-
pensive. Also, the temporal offset between tracks increases
for each new acquisition, causing temporal decorrelation and
limiting the potential size of the stack [2].

In this study, we use a deep Neural Network (NN) to
interpolate SAR images, whose BLs are not contained in
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Fig. 1. TomoSAR stack improvement throw DL-based view interpolation.

the original TomoSAR stack. The tomographic stack becomes
denser and the focused tomograms achieve alleviated ambigu-
ities and reduced side lobes. This facilitates the identification
of different layers within the PSP, e.g., canopy and ground.

The use of Deep Learning (DL) in the context of TomoSAR
focusing has been explored in [3], [4]. These studies use
supplementary data as ground truth (e.g., simulated PSPs and
LiDAR measurements) to train supervised DL models. The
method presented in [3] demonstrates that lightweight NNs
can be trained to perform inversion with a single feed-forward
pass, resulting in fast reconstructions that can efficiently scale
to future missions handling large volumes of data. However,
since beamformed PSPs are employed as input to the NN,
biases can be introduced. The input data may present focusing
issues, such as mixed targets due to poor resolution or spectral
ambiguities, which can affect the performance of the NN.
On the other hand, [4] retrieves forest height and underlying
topography using single- and dual-polarimetric data. Nonethe-
less, the usage of LiDAR information to train the NN may
be misleading. The penetration of low-frequency SAR signals
into the canopy, results in backscattering phase center heights
that differ from the ones measured by LiDAR. Moreover,
an incorrect handling of the TomoSAR stack potentially af-
fects the accuracy and reliability of the results. Finally, it
is imperative to consider that both [3], [4] may be limited
due to uncertain generalization, where discrepancies between
the supplementary information and the actual vertical profiles
(model mismatching) can lead to poor focusing.

The main contributions of this work are:

e Use of a DL model to synthesize views in a TomoSAR
stack, aimed at improving the focused tomograms. The
interpolated SLCs present robustness againts temporal
decorrelation and larger BLs.

o Use of flattened interferograms as input to the DL-model,
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which represent the phase information of the SLCs. The
interferograms are calibrated and flattened (employing a
known digital elevation model) in a pre-processing step.

II. METHODOLOGY

We envision a TomoSAR mission over a Region Of Interest
(ROI). Part of the ROI is acquired with the whole set of
BLs, whereas the remaining area omits some tracks. The
excluded passes are synthesized by the DL-based interpolator.
To address this approach, we first explain how the TomoSAR
stack produces a PSP. Subsequently, we elaborate on the DL-
model employed to synthesize the SLCs.

A. TomoSAR signal model

The TomoSAR inverse problem is modeled via [1], [2],
y = As + n. We consider a geometry with L passes, each
of them with a different LOS. For a single azimuth range
position, y represents the L pre-processed observations. The
M complex reflectivity values for every position {zm}f\n/lzl in
the PLOS direction are stored in vector s. The steering matrix
A denotes in its columns the steering vectors {a(zm)}%:1
[2]. These vectors represent the interferometric phase infor-
mation corresponding to the backscattering sources along the
PLOS positions {zm}%zl. The co-registered SLC images are
combined coherently.

The main objective of TomoSAR is recovering the PSP in
PLOS, defined by b = {<|sm’ >} . For example, the clas-
sical Fourier-based Matched Spat1al Fllter (MSF) [2] attains
bumsr = ATYA, where Y is the sample covariance matrix [2,
Eq. 4]. It is noteworthy that our DL-based interpolator works
independently of the chosen spectral estimator.

B. Deep learning model

DL models use cascaded non-linear processing units to
extract dataset features via example-based learning. We refer
to a modified U-net [5]. This architecture consists of two parts,
the left part of the ”U”, called contracting path, and the right
part, referred to as expansive path.

The contracting path comprises five encoder blocks, each
doubling the number of filters and halving the spatial size.
Conversely, the expansive path includes five decoder blocks,
each increasing the number of features and halving the spatial
dimension. Encoder blocks consist of two 3x3 convolutional
layers with padding 1, followed by a ReLU activation and a
2x2 maximum pooling function. Decoder units consist of a
transposed convolutional layer with stride 2, concatenation of
up-sampled feature maps with those from the contracting path,
and two 3x3 convolutional layers with padding 1 and ReLU
activation. The concatenation integrates low-level and high-
level information. A 1x1 convolutional layer in the expansive
path restores the initial sizes and defines the regression model.

Consider a TomoSAR stack {SLC[Z]} 17 SLC[l] is

selected as primary and the remaining {SLC[Z]}

as secondaries. The input SLCs are represented Wlth
2(L — 1) channels: one half being the flattened in-
terferograms [6] of the primary with each secondary

{r (SLC[l],SLC[i])}Z{ZZ2 and the other half attained with
{log(amp(SLCy;))/amp(SLCy) + 1)}522. The log is used
to manage a broad range of values. Then, the model input is
defined as XP*Pwx2(L=1) "with pl x pw patches.

The flattened interferograms represent the phase character-
istics of the images. As such, the detection of patterns is
facilitated, making the fitting of the model possible. Since
no multilooking is considered in the computation of the
interferograms, we can calculate back the original SLCs.

The SLC that the network learns to estimate, SLC4yget,
is portrayed by the next two channels: F(SLCD] ,SLCarget)
and log(amp(SLCyarget)/amp(SLCyy)) +1). Then, the out-
put of the network is presented as f(X) = WP XPWX2 where
f : X — W represents the NN mapping the input into the
output. The loss function Loss = Lossg~+LosSamp is considered
during training, where

1
Lossy = W Z subang(Wo, 7WQ ) (D
1 . =
LoSSamp = VARCW.)n ;(Wampi ~ W )2 ()

This is a modified version of the mean square error, com-
puted channel-wise (amplitude and phase) between SLC4rget
and the approximations made by the NN. The function
Subgng(a,b) represents the subtraction of angles a and b con-
sidering its circular disposition, giving us a realistic distance
of the two phases. The quantity of samples is denoted with
n. Expressions (1) and (2) are scaled with the variance (VAR)
aiming that Lossg and Lossay,, are in the same numeric range.

III. EXPERIMENTS

As a demonstration of the feasibility of the DL-based SLC
interpolator, the next experiment is conducted. The dataset
is divided in the azimuth direction into two subsets: one
designated for training and the other one for testing. The
training subset includes the entire set of L BLs, while the test
subset contains data from L — 1 BLs. This division is intended

Fig. 2. Test and train subset. The red line in the test subset is the slice where
the tomographic experiments are performed.
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Fig. 3. SLC intensity. (a) Original. (b) CC interpolated. (¢) DL-based interpolated. The circles indicate the EA.
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Fig. 4. Scatter plot between the original and estimated amplitudes in dB. (a)
Original and CC interpolated. (b) Original and DL-based interpolated.

to simulate a scenario where the training area is acquired with
all the tracks, and the testing area is covered with fewer passes.
Subsequently, a DL. model is trained using the training subset
to generate the missing SLC image in the test subset. To assess
the capabilities of the proposed method, results are compared
against those obtained using a not DL-based method, i.e., the
classical Cubic Convolution (CC) [7]. According to [7], CC
is considered one of the most effective SLC interpolators.

A. Specifications

The experiments are conducted using a crop of the F-SAR
dataset acquired during the 17SARTOM mission over the
Traunstein test site in Germany in 2017. The mission utilized
a L-Band sensor with a wavelength of 0.226m, featuring mul-
tipolarimetric capabilities. In our case only VV polarization is
considered. The sensor operated at a nominal height of 3720m,
with a range resolution of 1.3m and an azimuth resolution
of 0.6m. The training and test subsets comprise crops of
11400x3500 and 3600x3500 pixels, respectively, as seen in
Fig. 2. The following experiments consider 7 secondaries with
horizontal BLs at 6.6m, 22.3m, 30.2m, 42.3m, 90.1m, 120.9m
and 200.0m, with respect to the primary track at Om.

The proposed DL-model was fitted with the training subset
using 75% of the data for training and 25% for validation.
We consider patches with size 96x96. Mini-batches of size
256 patches were employed with an Adam optimizer using a
learning rate of 3 -10~* during 110 epochs.

B. Results

Results are addressed in terms of intensity (III-B1), phase
(III-B2) and its usability to improve the tomograms (III-B3).

Results in subsections III-B1 and III-B2 consider a target
BL at 68.5m, while III-B3 consider target BLs at 14.6m,
68.5m, 105.8m, and 158.6m. The Exemplary Areas (EA) in
the upcoming results highlight the differences between cases.

1) Intensity estimation assessment: Consider the original
SLC in Fig. 3-a as a reference. Observe that both CC and DL-
based methods (Fig. 3-b and Fig. 3-¢, respectively) managed
to successfully recognize most of the patterns that constitute
the scene. Yet, the agricultural fields in the EA are missed in
Fig. 3-b and not in Fig. 3-c. Additionally, Fig. 3-a and Fig. 3-c
share the same brightness, while Fig. 3-b is darker.

To evaluate the recreation of the intensity attained by the
interpolators, Fig. 4 shows a scatter plot of the amplitudes.
In Fig. 4-b (DL interpolator), the majority of pixel density
lies above the diagonal red line. In contrast, Fig. 4-a (CC
interpolator) shows that most of the density lies beyond the
red line and is more widely spread. This indicates that the
DL-based method achieves a more accurate recreation of the
original data in terms of intensity.

2) Phase estimation assessment: We refer to flattened in-
terferograms between SLCy4;ger and SLCyy). Consider as a
reference the interferogram computed using the original SLCs,
shown in Fig. 5-a. For the CC interpolation in Fig. 5-b, some
features in the EA are missed. Contrariwise, the DL-based
interpolation is able to retrieve such features (Fig. 5-c).

Fig. 6 depicts the interferometric coherence between the
original SLC and those interpolated. As seen in the EA of
Fig. 6-a, it is more evident that the CC interpolation exhibits
inferior performance in contrast to the DL-based interpolation
in Fig. 6-b. The latter shows a coherence very close to 1 in
most of the EA. Overall, the coherence achieved by the DL-
based interpolated SLC is higher than the one of CC. Note
that both methods are not accurate enough for forest areas.

3) Tomographic assessment: Tomograms in Fig. 7 were
computed with MSF. Three distinct EAs are highlighted in
the tomograms, tagged as Z1, Z2 and Z3. Fig. 7-a considers
8 original BLs, as 4 targeted BLs are taken out. The reference
tomogram in Fig. 7-b is produced with 12 original BLs. Fig. 7-
¢ and Fig. 7-d consider also 12 BLs, but 4 of them obtained
via interpolation, CC and DL-based, respectively. The red dots
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Fig. 5. Flattened interferograms between primary SLC and (a) original targeted SLC, (b) CC interpolated SLC and (¢) DL-based interpolated SLC. The

circles indicate the EA.
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Fig. 6. Interferometric coherence between original and estimated SLCs. (a)
CC interpolated. (b) DL-based interpolated. The circles indicate the EA.

at right hand of each tomogram indicate the interpolated BLs,
while the black dots refer to original BLs. On the left, Fig. 7-e
displays the superimposed vertical profiles from an exemplary
azimuth position, each of them referenced by color.

At first glance, the tomogram in Fig. 7-d (DL interpolator)
and the tomogram in Fig. 7-b (full stack) show similar
features. The Z1 EA encircles ambiguities, stronger in Fig. 7-
a and Fig. 7-c. For the DL interpolation (Fig. 7-d), these are
mostly suppressed. These differences are more prominent in
the vertical profiles depicted in Fig. 7-e. The Z2 EA points
out the ground layer, where we can see the side lobes of the
spectrum. These are stronger for the CC interpolator w.r.t. the
full stack and the DL interpolator. One can also observe an
attenuation of the spectrum for the CC interpolator w.r.t. the
full stack and the DL reconstructions. The Z3 EA encircles
forest, it is noticeable that the ground layer, beneath the forest,
is less intense for the CC case in Fig. 7-¢, being so drastic that
the ground and canopy layers are no longer distinguishable.
In contrast, this does not occur with the estimation made by
the DL method in Fig. 7-d.

C. Discussion

Consider the average interferometric coherence between
the original SLCs and those estimated in the tomographic
experiment (see Fig. 8). Overall, the DL-based interpolator
demonstrates better performance compared to CC, particularly
as the size of the gap between BLs increases. Nonetheless, for

the gap of 30.8m (BL at 105.8m) CC performs marginally
better. In order to understand this behavior, the temporal
information of the acquisitions is studied.

The 17SARTOM acquisitions occurred over two days: D1
on May 17th, 2017, and D2 on May 18th, 2017. The To-
moSAR stack includes BLs from both days, as marked in
pink and yellow in Fig. 8. Most of the BLs used as input
for the interpolators are from D1; namely, six belong to D1
and two are from D2. Among the four estimated BLs (red
dots in Fig. 8), three are from D2 and only one (at +105.8m)
was acquired on D1. The two nearest BLs (at +90.1m and
+120.9m) to the targeted BL at +105.8m are from DI1. For
the other three estimated BLs, the two nearest BLs are from a
different day. Since CC is a classical kernel interpolator [7], the
two nearest points greatly influence the result. This suggests
that in cases where the inputs are from the same day, CC may
exhibit slightly superior performance.

Fig. 8 suggests that the DL-based method is more robust
against temporal decorrelation. To corroborate this statement,
we analyze the temporal coherence to evaluate if temporal
decorrelation has occurred. Two BLs of 17SARTOM, acquired
at different days, are very close to each other (less than 1m).
Therefore, these BLs are employed to perform a zero-BL
experiment, as done in [8]. In this way, the total coherence
only depends on two factors, the SNR and time. SNR can be
estimated with the characteristics of the sensor and the noise-
equivalent-sigma-zero, measured during the mission (from -
39.5 dB to -35.5 dB, depending on the area). After subtracting
the SNR contribution from the total coherence, the temporal
coherence of the scene is obtained, as shown in Fig. 9. The
EA spots an area with high temporal decorrelation. This is the
same area where the DL-based method (Fig. 9-b) provides a
better estimation of the data in comparison to CC (Fig. 9-a).

IV. CONCLUSIONS

The analysis revealed that the proposed DL-based interpo-
lator accurately estimates SLCs, showing satisfactory results
in phase and intensity. The interpolated SLCs improved the
tomographic focusing and demonstrated robustness in scenar-
ios with temporal decorrelation and larger BLs, outperforming
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Fig. 7. Tomograms recoverd via MSF. (a) Using 8 original BLs. (b) Using 12 original BLs. (¢) Using 8 original BLs + 4 CC estimated BLs. (d) Using 8
original BLs + 4 DL-based estimated BLs. (e) Exemplary vertical profiles, colors indicate the corresponding tomogram. The positions of the horizontal BLs
are indicated on the right: the synthesized BLs marked in red, while the original BLs marked in black. The red rectangles indicate the EAs.

3720m +6.6m +14.6m +22.3m +30.2m +42.3m  +68.5m  +90.1m +105.8m +120.9m +158.6m +200m
D1 D1 D1 D1 D1 D1 D1
15.7m 47.8m 30.8m 79.1m
507 D1
(]
Dos
E —e— CC —— DL
20 30 40 50 60 70 80
Gaps [m]
D1:17-May-17 ® Estimated BL ® Original BL

Fig. 8. Average coherence of the estimated SLC as a function of the gap
between BLs to be filled up. On the top, the positions of the horizontal BLs:
the synthesized ones are marked in red, while the original ones are marked
in black.

the classical CC interpolator. These findings suggest that a
DL-based interpolator is a valid tool for improving TomoSAR
results in campaigns with a limited number of flights.
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