elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Electrical tortuosities of porous structures based on triply periodic minimal surfaces and honeycombs for Power-to-Heat systems

Ott, Thorsten und Dreißigacker, Volker (2024) Electrical tortuosities of porous structures based on triply periodic minimal surfaces and honeycombs for Power-to-Heat systems. Energies. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en17225781. ISSN 1996-1073.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
10MB

Kurzfassung

Power-to-Heat (P2H) systems offer an efficient solution for decarbonization by facilitating the integration of renewable energy into the industrial, heating and transport sectors. Key requirements include high thermal efficiency and an appropriate electrical resistivity to meet application-specific electrical needs. When designing P2H systems, materials and electrical boundary conditions are often limited by application-specific requirements, whereas geometric structures offer high degrees of freedom. While thermal design calculations are often straightforward due to a variety of available Nusselt and pressure loss correlations, simplified design pathways, particularly for porous structures, are lacking in electrical design. Given the wide range of geometric degrees of freedom for porous structures and the fact that detailed modeling involves substantial computational effort, this work employed electrical tortuosity to capture and correlate geometry-dependent impacts on effective electrical resistance in a compact way. Honeycomb and triply periodic minimal surface (TPMS)-based structures are selected for this purpose, as they are characterized by high specific surfaces allowing for high total heat transfer coefficients. The results show that the effective electrical resistance of both TPMS and honeycomb structures can be adjusted by the geometric structure. It was found that the electrical tortuosities of the investigated TPMS structures are nearly identical, while honeycomb structures show slightly higher values. Furthermore, the electrical tortuosity is mainly a function of the void fraction and does not change with the specific surface when the void fraction is kept constant. Finally, correlations for electrical tortuosity depending on geometric parameters with a mean error below 5 % were derived for the first time, thereby providing a basis for simplified and computationally efficient electrical design calculations for P2H systems.

elib-URL des Eintrags:https://elib.dlr.de/209219/
Dokumentart:Zeitschriftenbeitrag
Titel:Electrical tortuosities of porous structures based on triply periodic minimal surfaces and honeycombs for Power-to-Heat systems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ott, Thorstenthorsten.ott (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dreißigacker, VolkerVolker.Dreissigacker (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 November 2024
Erschienen in:Energies
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3390/en17225781
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:1996-1073
Status:veröffentlicht
Stichwörter:TPMS, triply periodic minimal surfaces, electrical tortuosity, power-to-heat
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Thermische Prozesstechnik
Hinterlegt von: Ott, Thorsten
Hinterlegt am:05 Dez 2024 17:37
Letzte Änderung:05 Dez 2024 17:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.