elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Forest Height Estimation with TanDEM-X SAR and InSAR Features using Deep Learning

Mahesh, Ragini Bal und Hänsch, Ronny (2024) Forest Height Estimation with TanDEM-X SAR and InSAR Features using Deep Learning. IEEE Geoscience and Remote Sensing Letters, 21 (401930). IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3474252. ISSN 1545-598X.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
23MB

Offizielle URL: https://ieeexplore.ieee.org/document/10705348

Kurzfassung

Accurate forest height estimates lead to improved accuracy of biomass estimation and are crucial for monitoring and conservation efforts. Interferometric synthetic aperture radar (InSAR) techniques use two synthetic aperture radar (SAR) images to measure the interferometric coherence that includes the volumetric decorrelation which is known to be related to forest canopy height. Several approximations and assumptions are made in different steps to compute volumetric decorrelation and to invert it to forest canopy height using physical models. Data-driven approaches overcome the potential bias introduced by these assumptions by directly estimating forest canopy height. However, the question of optimal representation and level of processing of the input data is often neglected. We address this gap comparing different SAR and InSAR input features such as single-look-complex (SLC) images, backscatter, coherence, and volumetric decorrelation. The resulting best model has a root-mean-squared error (RMSE) of 6.12 m with volumetric decorrelation as primary input feature. It is followed using coherence as primary input with an RMSE of 6.30 m.

elib-URL des Eintrags:https://elib.dlr.de/209182/
Dokumentart:Zeitschriftenbeitrag
Titel:Forest Height Estimation with TanDEM-X SAR and InSAR Features using Deep Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mahesh, Ragini Balragini.mahesh (at) dlr.dehttps://orcid.org/0000-0002-2747-9811172901798
Hänsch, RonnyRonny.Haensch (at) dlr.dehttps://orcid.org/0000-0002-2936-6765NICHT SPEZIFIZIERT
Datum:4 Oktober 2024
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:21
DOI:10.1109/LGRS.2024.3474252
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Deep learning (DL), forest canopy height, synthetic aperture radar (SAR), TanDEM-X
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Mahesh, Ragini Bal
Hinterlegt am:02 Dez 2024 10:54
Letzte Änderung:02 Dez 2024 10:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.