Mahesh, Ragini Bal und Hänsch, Ronny (2024) Forest Height Estimation with TanDEM-X SAR and InSAR Features using Deep Learning. IEEE Geoscience and Remote Sensing Letters, 21 (401930). IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3474252. ISSN 1545-598X.
PDF
- Preprintversion (eingereichte Entwurfsversion)
23MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10705348
Kurzfassung
Accurate forest height estimates lead to improved accuracy of biomass estimation and are crucial for monitoring and conservation efforts. Interferometric synthetic aperture radar (InSAR) techniques use two synthetic aperture radar (SAR) images to measure the interferometric coherence that includes the volumetric decorrelation which is known to be related to forest canopy height. Several approximations and assumptions are made in different steps to compute volumetric decorrelation and to invert it to forest canopy height using physical models. Data-driven approaches overcome the potential bias introduced by these assumptions by directly estimating forest canopy height. However, the question of optimal representation and level of processing of the input data is often neglected. We address this gap comparing different SAR and InSAR input features such as single-look-complex (SLC) images, backscatter, coherence, and volumetric decorrelation. The resulting best model has a root-mean-squared error (RMSE) of 6.12 m with volumetric decorrelation as primary input feature. It is followed using coherence as primary input with an RMSE of 6.30 m.
elib-URL des Eintrags: | https://elib.dlr.de/209182/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Forest Height Estimation with TanDEM-X SAR and InSAR Features using Deep Learning | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 4 Oktober 2024 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 21 | ||||||||||||
DOI: | 10.1109/LGRS.2024.3474252 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Deep learning (DL), forest canopy height, synthetic aperture radar (SAR), TanDEM-X | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||
Hinterlegt von: | Mahesh, Ragini Bal | ||||||||||||
Hinterlegt am: | 02 Dez 2024 10:54 | ||||||||||||
Letzte Änderung: | 02 Dez 2024 10:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags