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Abstract—Accurate forest height estimates lead to improved
accuracy of biomass estimation and are crucial for monitoring
and conservation efforts. InNSAR (Interferometric Synthetic Aper-
ture Radar) techniques use two SAR images to measure the inter-
ferometric coherence that includes the volumetric decorrelation
which is known to be related to the forest canopy height. Several
approximations and assumptions are made in the different steps
to compute the volumetric decorrelation and to invert it to forest
canopy height using physical models. Data-driven approaches
overcome the potential bias introduced by these assumptions by
directly estimating forest canopy height. However, the question of
optimal representation and level of processing of the input data
is often neglected. We address this gap comparing different SAR
and InSAR input features such as Single-Look-Complex images
(SLCs), backscatter, coherence, and volumetric decorrelation.
The resulting best model has an RMSE of 6.12 m with volumetric
decorrelation as primary input feature. It is followed by using
coherence as primary input with an RMSE of 6.30 m.

Index Terms—Deep Learning, Synthetic Aperture Radar
(SAR), TanDEM-X, LVIS, Forest Canopy Height

I. INTRODUCTION

Orest height estimation plays an important role in a

wide range of ecological, environmental, and conserva-
tion applications. It supports advancing the understanding of
forest ecosystems and promotes sustainable practices, e.g. via
improved accuracy of forest biomass and carbon stocks esti-
mates [1]. This information is fundamental for comprehending
the vital role of forests in carbon sequestration and aligns
with global initiatives like REDD+ (Reducing Emissions from
Deforestation and Forest Degradation) that aim to reduce
emissions from deforestation and forest degradation [2]. Be-
yond carbon estimation, forest height also emerges as a
critical parameter for monitoring ecosystem dynamics. Lever-
aging frequent and high-resolution observations, it facilitates
tracking of forest growth, disturbances (such as logging or
natural events), and regrowth. Such insights are important
while assessing the overall health and resilience of forest
ecosystems, providing essential data for informed conservation
and management decisions [3].

Several remote sensing technologies are utilized in the mea-
surement of forest height such as optical imaging sensors [4],
Light Detection and Ranging (LiDAR) [5], and Synthetic
Aperture Radar (SAR) [6]. Optical sensors capture visible and
near-infrared light, offering information on forest health, struc-
ture, and indirectly forest height. LiDAR, deployed on both
space- and airborne platforms rely on the detection of laser
beams from the top of the canopy to create highly detailed
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three-dimensional models of the forest, allowing for precise
height measurements. SAR systems emit microwave signals
towards the Earth’s surface and record the backscattered
echoes. The interaction between the radar waves and the forest
canopy provides information about the structure and height of
the vegetation. SAR has emerged as a suitable technology for
forest height measurements over optical and LiDAR sensors
due to several benefits such as robustness regarding weather
conditions, day-and-night imaging capabilities, and the ability
to partially penetrate the forest canopy.

The conventional approach for forest height estimation
using SAR leverages Interferometric SAR (InSAR) data [5],
[6] and includes establishing an empirical relationship with
the interferometric coherence, a correlation variable derived
from two SAR images. Coherence can be decomposed into
various decorrelation factors, with volume decorrelation being
one of the most important contributions [7]. This particular
factor is intricately linked to the volumetric scattering of the
forest canopy. It quantifies the level of decorrelation caused
by the three-dimensional nature of the vegetation structure.
Despite its pivotal role, its estimation remains a challenging
task. Often a physical model such as Random Volume over
Ground (RVoG) [5], [6] is used in inverting the forest height
from the complex volumetric scattering. However, such models
have certain limitations in practical applications including po-
tential inaccuracies in representing complex forest structures,
sensitivity to assumptions about the distribution of scatterers,
and challenges in handling heterogeneous landscapes.

In recent years, Deep Learning (DL) models have shown
the capacity to learn complex relationships and patterns from
data. They are able to adapt to intricate features within
forest structures, to capture nonlinear dependencies that might
be challenging for physics-based models, and to accurately
represent the forest height structure [8]-[11]. Prior work has
focused primarily on the advancement of different DL archi-
tectures and training methodology. However, the influence of
the nature and representation of the input data on the final
accuracy of the height regression has been neglected so far.
We close this gap by using a relatively standard DL model
to estimate forest canopy height but evaluate the influence
of different SAR and InSAR features on the accuracy and
robustness of the trained models, providing insights into the
key features driving the data-based estimation process.

II. RELATED WORK

Forest height estimation has seen recent advancements,
leveraging the integration of data-driven analysis and advanced
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remote sensing technologies. Popular machine learning algo-
rithms used for this task include Random Forests [12], [13]
and Support Vector Machines [12], [14]. With the increasing
availability of large-scale remote sensing data and the advan-
tage offered by DL in handling complex tasks, many recent
studies have focused on DL for estimating forest height and
combined different data sources such as LiDAR, SAR, and
optical imagery [15]-[18].

DL-based forest height estimation using InNSAR data, formu-
lates the task as either a classification or a regression problem,
each offering distinct advantages. Classification frameworks
for forest height estimation categorize vegetation into discrete
height classes. This approach enables the identification of
height ranges corresponding to different forest structures.
Wang et al. [9] proposes a supervised technique based on
a complex-valued convolutional neural network (CNN) to
estimate forest height from complex interferometric coherence
derived from polarimetric interferometric SAR data. Reference
heights are categorized into eight height classes and resulting
models have RMSE values ranging from 2.58 m to 3.74 m
and R? values from 0.83 to 0.92. The proposed complex-
valued CNN allows the use of complex-valued coherence
while it adds to the complexity of architectural design with the
integration of complex-valued convolutional operations and
activation functions. Yang et al. [19] also use a classification
approach to estimate forest height by quantizing the LiDAR-
based reference heights into 1 m classes. The covariance
matrix calculated from the SAR Tomography stack is used
as input which contains both polarimetric and interferometric
information. The model achieves an RMSE of 2.33 m. Despite
this success, the classification approach bears the risk that it
may not capture the full range of variation in forest height, as
it bins data into discrete categories.

Regression-based approaches treat forest height estimation
as a continuous value prediction task and learn the intricate
relationships between input features and the continuous forest
height variable. Thus, they are better suited for capturing fine-
grained variations in forest height. Carcereri et al. [10] present
a new framework that uses the unique capabilities of TanDEM-
X bistatic SAR data and AfriSAR LVIS measurements for
the estimation of forest height over Gabon using a fully con-
volutional network. The model leverages coherence, volume
decorrelation, backscatter, and ancillary information such as a
DEM, the height of ambiguity, and the local incidence angle
as inputs and achieves an overall accuracy of 5.41 m RMSE
and 0.76 R2. Li et al. [11] similarly uses a CNN architecture to
estimate forest height from complex coherence as input over
one of the AfriSAR campaign regions (i.e. Lope, Gabon). To
overcome the requirement of LiDAR as reference data, the
framework uses estimations from two traditional methods, i.e.
RVOG and DEM Differencing, and aims to compensate for the
over- and under-estimations resulting from the two approaches.
The model achieves an RMSE of 10.15 m and R? of 0.87.
Authors note that the shortcomings of the traditional methods
in producing good predictions equivalent to the ground truth
also directly affect the results of the DL model.

In a first preliminary study [20] we investigate how for-
est height estimation depends on various input features,
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Fig. 1: U-Net model with input block, four encoder blocks, a
convolutional block (conv block), four decoder blocks, and a
convolutional output layer, along with skip connections.

namely coherence, volume decorelation, and complex-valued
backscatter, combined with information about the sensor ge-
ometry. The current work extends this study by also consid-
ering topographic corrected backscatter as well as including
a more rigorous analysis of the combination of various input
features. The aim of this paper is to understand the influence
of different SAR (SLCs, backscatter) and InSAR (coherence,
volumetric decorrelation) input features and the effect of
their combinations (including the combination with ancillary
information) on model performance in determining the best
suitable input features for forest height estimation.

III. METHODOLOGY

For the following experiments (see Section IV), we leverage
different features derived from interferometric SAR (InSAR)
data acquired by the German TanDEM-X mission representing
various amounts of preprocessing shown in Figure 3. InSAR
is based on two images acquired from two different positions
(spatially and sometimes even temporally separated). Bistatic
sensors such as TanDEM-X consist of two satellites flying in a
close formation separated by a spatial baseline acquiring SAR
data simultaneously from the same area. The two acquired
SAR images are focused and spatially aligned before being
used for further processing. All of the following features are
derived from this data product and used as input for a neural
network to derive forest height.

Additionally to the individual SAR images (both master and
secondary image), we also use the backscatter coefficient o
[10] (individually for image pair) which describes the local
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texture of the scene, providing information about roughness
and other surface characteristics.

The InSAR-derived features are computed from the in-
terferometric pair of SAR images. Coherence 7 is a cross-
correlation factor [10] offering insights into the similarity of
scattering properties between two images. We apply correc-
tions for flat Earth and topography related phase effects by
subtracting their contributions.

The coherence vy can be decomposed into several decor-
relation factors, i.e. v = s * V¢ - Vg - YSNR * Yool [7].
The volume decorrelation 7,,; is caused by the presence of
volumetric scattering and thus of particular relevance for forest
height estimation [5], [6]. It is derived from ~ by neglecting
other decorrelation factors such as quantization decorrelation
(7). temporal decorrelation (y; = 1) due to the bistatic
configuration, and decorrelation due to other sensor parameters
(Vs = Yamb - Vrg - ’Yaz) such SAR (Yamp) and azimuth (’yaz)
ambiguities as they do not depend on the illuminated scene.
However, v is dependent on the baseline unless proper range
filtering actions are made resulting in range decorrelation
(rg)- Thus, a rough approximation of Y,o; = ¥ - Vrg/VSNR
is computed compensating only for noise (ysyg) and vrg.

Additionally to the features above, we use the topographi-
cally corrected vertical wavenumber «, [6] that quantifies the
rate of change in interferometric phase related to terrain height
changes and serves as a sensitivity measure that is proportional
to the baseline between SAR satellites.

All features are geocoded to the coordinate system of the
reference LVIS measurements, i.e. EPSG:4326 - WSG84. We
performed Range-Doppler terrain correction using Copernicus’
30 m Global DEM, and resampled the data to 20 m at which
better forest height mapping is obtained with TanDEM-X data.

We use a standard U-Net [21] (shown in Figure 1) consist-
ing of an input block delivering information to a sequence of
four encoder blocks, four decoder blocks, and an output block
together with dropout and batch normalization layers. As loss
function we use Root-Mean-Squared Error (RMSE) with 1.2
regularization which is optimized via ADAM.

IV. EXPERIMENTS

A. Experimental Setup

We use TanDEM-X (DLR) CoSSC data acquired in 2016
over Mabounie, Gabon. As reference forest height serves
”AfriSAR: Gridded Forest Biomass and Canopy Metrics De-
rived from LVIS, Gabon, 2016” containing geolocated for-
est canopy cover derived from full-waveform LiDAR data
obtained during the 2016 NASA-ESA AfriSAR campaign,
recorded by LVIS, i.e. the readily processed Level 3 (13al)
product RH98 (the mean relative height at which 98% of the
waveform energy occurs) with a spatial resolution of 25 m.
We match the interferometric products by resampling to 20 m
and apply a Forest/Non-Forest map.

The available data is partitioned into spatially separated
training (five image pairs) and validation (one image pair)
sets. Attention was paid while choosing the validation set that
it is representative of the forest height distribution found in
the training set. Further visualization of the study area with

| 1|23 [4]5][6[7[8]9]10]1]|1n
SLC | X | X | X | X

o0 X | X | X | X

o X | X
Yvol X | X X | X X | X
Kz X X X X X X

TABLE I: Combination of input features used in the experi-
ments representing different levels of preprocessing.
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Fig. 2: Mean RMSE and standard deviation of trained model
for each input feature and their combinations +x, +7y;, and
+7Yvot + £ oOn validation scene.

splits is provided in the Appendix. The images are divided
into patches of size 64 x 64 with a stride of 32. The U-Net is
trained for 100 epochs with a batch size of 8 and a learning rate
varying between 10~* and 10~2 based on the combinations
of available input features shown in Table L.

We use RMSE and the coefficient of determination (R?) as
quantitative performance metrics. All experiments are repeated
three times and performance averaged.

B. Results and Discussions

We quantitatively evaluate 12 variations of input modalities
listed in Table I. Figure 2 shows the forest height accuracy
of input features and their combinations. The RMSE mean
is plotted against all input features with confidence intervals
representing the standard deviation calculated over three rep-
etitions. Features are grouped by their primary input modality
and ordered according to the level of preprocessing, i.e.
starting with SLCs and ending with volumetric decorrelation.

Among the evaluated input modalities, the best-performing
model is the configuration ~,,; + «, with an RMSE of
6.12 m and R? of 0.69. This is expected since the geometric
distribution of scatterers in a canopy is the main cause of this
type of decorrelation. Accordingly, it plays a significant role
in physical models to estimate forest height from interferomet-
ric ~y. This configuration ~,,; + . also aligns with practical
knowledge of the physical modeling of forest height from
Ywol (K2, w) as a function of the vertical distribution (z) of the
scatterers at a given spatial baseline «, and single polarization
w. The appropriate choice of . values impacts the accuracy
of physical models. Too large values saturate the sensitivity to
forest height with underestimated heights for tall trees whereas
too small values result in residual noise introducing large
height errors due to the wrongful scaling of ~,, to forest
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Fig. 3: Input data, reference target (white represent regions
without data), and predicted forest height (white represent non-
forest regions) for the test scene over Mabounie, Gabon.

heights. The dependency of v,,; on x is also captured by the
DL model. Performance increases when using . in addition
t0 Yyor, i.6. an RMSE of 6.12 m (R? = 0.69) versus not
using k. with an RMSE of 7.26 m (R? = 0.56). Similar to
physical models, providing the network with «, values gives
a reference scaling factor for forest height inversion and helps
improve estimates. A good agreement is obtained between the
predicted and reference LVIS RH98 height for this model both
qualitatively as shown in Figure 3 via predicted, target, and
error maps and quantitatively shown by the density scatter
plot with the respective marginal distributions in Figure 4.
The error map is computed by subtracting target height from
prediction and predominantly shows blue colors indicating an
underestimation. Areas with the negative errors are observed
to be located in very dense forest canopy regions. Typically
tropical rainforests in Gabon can have canopy heights ranging
from 20 m to 50 m which is observed in both the target
and predicted heights resulting in higher density regions of
the scatter plot given by red color gradients. Data points on

the plot have a positive slope and are clustered around the
regression line indicating that the model fits the data well and
captures the relationship between the two variables.

The next best-performing model is the coherence model
configuration y+, with slightly higher RMSE than 7,4+ 5.
The mean RMSE of this model is 6.30 m and R? is 0.67.
Performance increases with the addition of x, as for the
previous ,,; model, i.e. without s, the RMSE increases to
6.81 m (R? = 0.61). The similarly good performance of the
~ model compared to ,, can be attributed to the automatic
denoising capability of the DL network when mapping 7 to
forest heights without the need to compensate for noise from
other other decorrelation factors. Both InSAR input features
v and 7, with the addition of x, perform well overall and
show robustness in mapping forest height estimates.

SAR input features have lower performance with higher
error in comparison to InSAR input features. Models with
SLCs and o as input have an RMSE of 8.00 m and 9.67 m
with R? of 0.47 and 0.21, respectively. Addition of . does
not show consistent improvement across SAR features. While
it reduces the RMSE of the oy + k, model to 9.1 m, the
error of the SLC + k., model increases slightly to 8.14 m
but stays well within the range of the standard deviation
of the model without k.. Texture information contained in
oo has its limitation in improving forest height estimation
when used as primary input. Meanwhile, the network shows
promising results in directly estimating forest height from
SLCs but is not as efficient as estimating from InSAR features.
Although networks can learn complex features and spatial
relationships in the data, it seems challenging for the current
network to learn the multiplication operations required for
InSAR processing to estimate representations closer to 1.

If the input modalities combine SAR with InSAR features,
i.e. Yyor and 7,0 + k., the network potentially learns to
disregard oy in the presence of more straightforward input
modalities reducing the RMSE error to 6.84 m for using
SLCs and 6.94 m and 6.73 m for backscatter o, respectively,
i.e. a model performance that is nearly equivalent to using
InSAR features as the primary input. However, adding any
other feature to the best performing input of ~,,; + ~, leads to
a slight decrease of performance. Adding a partially redundant
yet less informative feature increases the problem complexity
as the model has to learn to ignore this feature. Thus, input
dimensionality does not yield an increased performance.

Results demonstrate that it is advantageous to provide pre-
computed features to the network if they are known to be
beneficial for the prediction task rather than relying on the
general ability of neural networks to learn directly from data.

V. CONCLUSION

In conclusion, this study uses DL models (i.e. a U-Net)
to assess the impact of various input features including SAR
(SLCs and o0g) and InSAR features (v and ~,,;) on forest
height estimation from TanDEM-X scenes with LVIS RH98
reference targets over Mabounie, Gabon. Different combina-
tions of these features are evaluated using changes in RMSE
and R? across diverse processing scenarios. Among all mod-
els, the configuration with ~,, + k. emerges as the best-
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Fig. 4: Density Scatter Plots of the predicted forest [m] height
vs. LVIS RH98 [m] for the validation scene for the best
performing model with input combination of v, + <.

performing approach aligning with theoretical and practical
forest height modeling principles. Coherence coupled with «,
also shows very good performance eliminating the need to
denoise data to obtain volumetric decorrelation from coherence
by compensating for other decorrelation factors. In contrast
to the InSAR features, the models with SAR input features
showed weaker performance. oy doesn’t contribute any useful
information in the presence of InSAR features highlighting
the significance of strategic feature selection in optimizing DL
models for accurate forest height estimation.

Future work will focus on specific adjustments to the model
architecture to tailor it for tasks that involve the multiplication
of input features as in interferogram computation from SLCs
to capture complex information. These adaptations include
modifying the network architecture to an adequately complex
model, a sufficient number of training samples, and enough
computational resources (e.g. number of epochs). Addition-
ally, the complexity of directly mapping from SLCs can be
addressed by novel training strategies or loss functions that
introduce knowledge from physical inversion models to guide
the network and perform a more streamlined forest height
mapping. While the current results clearly show the benefits of
InSAR derived features, these modifications have the potential
to yield comparable SLC-based outcomes. Such an approach
would not rely on assumptions and processing steps necessary
to compute InSAR features (e.g. window size to compute
coherence, coherence decomposition, etc.).
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APPENDIX A
ADDITIONAL RESULTS TABLE
0.4 1
TABLE II: Mean performance metrics MAE (m), RMSE (m), <
and R? for all combinations of input features over three 803
. . g
iterations. 3
g
Model Mean MAE Mean RMSE RMSE STD Mean R? g 0.2 1
SLCs 6.31 8.00 0.1936 0.47 Ei
SLCs + k. 6.41 8.14 0.1721 0.45 €
SLCs + Yyl 5.39 6.84 0.0544 0.61 2 0.1
SLCS + Kz + Yool 5.33 6.84 0.0735 0.61
oo 7.56 9.67 0.6034 021 T
oo + K 7.06 9.1 0.4450 0.31 0.0
00 + Yvol 5.40 6.94 0.2290 0.6 :
00 + Kz + Yool 531 6.73 0.1429 0.62 1 5 3 2 M 5
5 5.5 6.81 0.0424 0.61 Tandem-X Images
Y+ R 4.89 6.30 0.1310 0.67
Yool 575 7.26 0.5354 0.56 . . S
Vool + K 474 6.12 0.0047 0.69 Fig. 6: Vertical Wavenumber «, for training images (1-5) and
validation image (6).
APPENDIX B

DATASET PREPROCESSING

All the extracted input features are geocoded from slant
range geometry to an Earth coordinate reference system using
the SNAP toolbox. Geometric distortions (e.g. foreshortening)
present in the SAR data due to the slant range geometry are
removed by performing Range Doppler Terrain Correction
using Copernicus 30 m Global DEM, where all pixels are
shifted to their correct locations according to the input DEM
using bi-linear interpolation. At the end of the processing, all
input features and the reference measurements are resampled
to 20 m spatial resolution.

Figure 5 shows the selected study area along with reference
data and the split into train and test set. Figure 6 shows the
distribution of the vertical wavenumber «, within these scenes.

‘*;}5

Fig. 5: Study area in Mabounie, Gabon consisting of training
(5 images) and validation (1 image) split. Dark green color
here represents the Lidar measurements overlaid on top of
Tandem-X Coherence Images and red boundary is the valida-
tion region.

APPENDIX C
LEARNING CURVES

Figure 7 shows that both training and validation loss con-
verge relatively quickly and stable for the best performing
model. While the training loss continues to decrease, the
validation loss does not improve further.

—— Training Loss
30 Validation Loss
25 A
0 20 A
[e]
—
15 A
10
0 20 40 60 80 100
Epochs

Fig. 7: Training and validation loss (RMSE) curves for the
best performing model v+ K.

APPENDIX D
ADDITIONAL QUALITATIVE RESULTS

Figure 8 shows predictions and error maps for all features
combinations.
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Fig. 8: Prediction and error (prediction - target) maps for all input feature combinations in this study. Predictions are masked
with forest and non-forest masks (white regions).



