Wahl, Jonas und Ninad, Urmi und Runge, Jakob (2024) Foundations of causal discovery on groups of variables. Journal of Causal Inference, 12 (1). Walter de Gruyter. ISSN 2193-3677.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.degruyter.com/document/doi/10.1515/jci-2023-0041/html
Kurzfassung
Discovering causal relationships from observational data is a challenging task that relies on assumptions connecting statistical quantities to graphical or algebraic causal models. In this work, we focus on widely employed assumptions for causal discovery when objects of interest are (multivariate) groups of random variables rather than individual (univariate) random variables, as is the case in a variety of problems in scientific domains such as climate science or neuroscience. If the group level causal models are derived from partitioning a micro-level model into groups, we explore the relationship between micro- and group level causal discovery assumptions. We investigate the conditions under which assumptions like causal faithfulness hold or fail to hold. Our analysis encompasses graphical causal models that contain cycles and bidirected edges. We also discuss grouped time series causal graphs and variants thereof as special cases of our general theoretical framework. Thereby, we aim to provide researchers with a solid theoretical foundation for the development and application of causal discovery methods for variable groups.
elib-URL des Eintrags: | https://elib.dlr.de/208999/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Foundations of causal discovery on groups of variables | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 12 Juli 2024 | ||||||||||||||||
Erschienen in: | Journal of Causal Inference | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 12 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Walter de Gruyter | ||||||||||||||||
ISSN: | 2193-3677 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Causal Inference, Causal discovery, multivariate data, graphical models | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - keine Zuordnung | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||
Hinterlegt von: | Hochsprung, Tom | ||||||||||||||||
Hinterlegt am: | 20 Dez 2024 10:51 | ||||||||||||||||
Letzte Änderung: | 20 Dez 2024 10:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags