Bangalore, Ranjini und Gonzalez, Ruben und Brunschwiler, Thomas und Fraccaro, Paolo und Blumenstiel, Benedikt und Albrecht, Conrad M und Ait Ali Braham, Nassim (2024) Hyperspectral foundation model trained by spectral reconstruction for greenhouse gas emission estimation. 2024 AGU, 2024-12-09, Washington, DC, USA.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1678877
Kurzfassung
Remote sensed satellite data, in particular, the data that has been sensed very finely in the electromagentic spectrum lends itself to learn the signatures of many objects on the surface and in the atmosphere of Earth. Very large amounts of such data are fed in to artificial intelligence models that are carry out learning general representations from the data in a self supervised manner. On top of this learning of general representations, the model can be made to see labeled or ground truth data to associate data patterns with specific signatures of objects. In this work, the objects are the greenhouse gas such as methane and carbon dioxide concentrations in the atmospheres and models learn the signatures of gas concentrations. We will use such a model to estimate the greenhouse gas concentrations in the atmosphere.
elib-URL des Eintrags: | https://elib.dlr.de/208968/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||
Titel: | Hyperspectral foundation model trained by spectral reconstruction for greenhouse gas emission estimation | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | hyperspectral remote sensing, EnMAP, greenhouse gas emission monitoring, foundation models, deep learning, artificial intelligence | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 2024 AGU | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Washington, DC, USA | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsdatum: | 9 Dezember 2024 | ||||||||||||||||||||||||||||||||
Veranstalter : | American Geophysical Union | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2024 14:22 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 18 Dez 2024 18:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags