elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hybrid Metapopulation Agent-based Epidemiological Models

Bicker, Julia und Kühn, Martin Joachim und Schmieding, Rene und Meyer-Hermann, Michael (2024) Hybrid Metapopulation Agent-based Epidemiological Models. Joint annual meeting of the Korean Society for Mathematical Biology and the Society for Mathematical Biology, 2024-06-30 - 2024-07-05, Seoul, South Korea.

[img] PDF
4MB

Kurzfassung

Emerging infectious diseases and climate change are two of the major challenges in the 21st century. Although over the past decades, highly-resolved mathematical models have contributed in understanding dynamics of infectious diseases and are of great aid when it comes to finding suitable intervention measures, they may require substantial computational effort and produce significant CO2 emissions. Two popular modeling approaches for mitigating infectious disease dynamics are agent-based and equation-based models. Agent-based models offer an arbitrary level of detail and are thus able to capture heterogeneous human contact behavior and mobility patterns. However, insights on individual-level dynamics come with high computational effort that scales with the number of agents. On the other hand, equation-based models are computationally efficient even for large populations due to their complexity being independent of the population size. Yet, equation-based models are restricted in their granularity as they assume a (to some extent) homogeneous and well-mixed population. To manage the trade-off between computational complexity and level of detail, we propose a spatial-hybrid model that uses an agent-based model only in an area of interest (focus region). To account for relevant influences to disease dynamics in the focus region, e.g. due to commuting activities, we use equation-based models in the neighboring regions to consider these influences while keeping moderate computational costs. Our hybridization approach demonstrates significant reduction in computational effort by more than 90% without losing the required depth in information, thus making our computational approach highly energy efficient. The hybrid model is based on two models recently introduced, however, any other suitable combination of agent-based and equation-based model could be used, too. Concluding, hybrid epidemiological models can provide insights on the individual scale where necessary, using aggregated models where possible, thereby making an important contribution to green computing.

elib-URL des Eintrags:https://elib.dlr.de/208945/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Hybrid Metapopulation Agent-based Epidemiological Models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bicker, Juliajulia.bicker (at) dlr.dehttps://orcid.org/0000-0001-9382-4209NICHT SPEZIFIZIERT
Kühn, Martin JoachimMartin.Kuehn (at) dlr.dehttps://orcid.org/0000-0002-0906-6984NICHT SPEZIFIZIERT
Schmieding, ReneRene.Schmieding (at) dlr.dehttps://orcid.org/0000-0002-2769-0270NICHT SPEZIFIZIERT
Meyer-Hermann, MichaelDepartment of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Researchhttps://orcid.org/0000-0002-4300-2474NICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Hybid Modeling, Agent-based Modeling, Metapopulation Model, Infectious Diseases
Veranstaltungstitel:Joint annual meeting of the Korean Society for Mathematical Biology and the Society for Mathematical Biology
Veranstaltungsort:Seoul, South Korea
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:30 Juni 2024
Veranstaltungsende:5 Juli 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Bicker, Julia
Hinterlegt am:25 Nov 2024 08:54
Letzte Änderung:25 Nov 2024 08:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.