

HYBRID METAPOPULATION AGENT-BASED EPIDEMIOLOGICAL MODELS

Julia Bicker Predictive Simulation Software 2024/07/05

Joint work with René Schmieding, Martin Kühn and Michael Meyer-Hermann

Motivation

- Arbitrary level of detail
- Capture heterogenous contact behavior and mobility patterns
- Computational complexity is dependent on the number of agents

Equation-based models

- Aggregated results (on compartmental level)
- Homogenous and well-mixed population
- Runtime independent on population size

Hybridization approaches - Spatial hybridization

Motivation

- Interest in infection spread in a focus region
- Considering influence of connected regions on infection dynamics in focus region dynamically
- Exclusive availability of data in a focus region
- Reduction in computing time and energy demands

Concept

- Agent-based model in focus region
- Equation-based model for surrounding regions

Hybridization approaches - Temporal hybridization

Motivation

- Low case numbers: High stochasticity and individual behavior is important
- High case numbers: Individual behavior is less influential and simulation results are close to average
- Reduction in computing time and energy demands

Concept

- Agent-based model when case numbers are below a threshold
- Equation-based model when case numbers exceed threshold

Models - Agent-based model (ABM*)

- Agent $(x, z) \in \Omega \times \mathcal{Z}$
 - $\Omega \subset \mathbb{R}^2$ compact domain
 - $\mathcal{Z} = (z_1, z_2, \dots, z_{n_l})$ set of infection states
- System state $Y := (X, Z) \in \Omega^{n_a} \times \mathcal{Z}^{n_a}$
- Infection state dynamics: Stochastic jump processes \$\mathcal{P}_{ij}(t) := \mathcal{P}_{f_{ii}^{(\alpha)}(Y(t))}\$
- Movement: Diffusion process $\frac{dX(t)}{dt} = -\nabla F(t, X(t)) + \sigma(t, X(t))\xi(t)$
 - $F: \Omega \to \mathbb{R}$ a potential
 - $\sigma : [0, T] \times \mathbb{R}^2 \to \mathbb{R}^{2 \times m}$ a noise term
 - $\xi = \frac{dW}{dt}$ the derivative of the Brownian motion in \mathbb{R}^m

*Winkelmann, S., Zonker, J., Schütte, C., Conrad, N.D.: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences 336, 108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614

Models - Piecewise-deterministic Metapopulation Model (PDMM*)

- Domain $\Omega = \bigcup_{k=1}^{n_R} \Omega_k$ split into n_R subregion $\Omega_1, ..., \Omega_{n_R}$
- System state N = (N_i^(k))_{i∈Z,k=1,...,n_R} ∈ ℝ^{n_i×m}_{≥0}, with N_i^(k) the number of agents in region Ω_k and compartment i
- Infection state dynamics: Ordinary differential equations $\frac{d}{dt}N_i^{(k)}(t) = \sum_{j \neq i} (f_{ji}^{(k)}(N) - f_{ij}^{(k)}(N))$
- Movement: Stochastic jump processes $\mathcal{L}_{i}^{(kl)}$ with rates $\lambda_{i}^{(kl)} N_{i}^{(k)}$

*Winkelmann, S., Zonker, J., Schütte, C., Conrad, N.D.: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences 336, 108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614

Computational costs

ABM

- Movement: Evaluation of diffusion process (per agent)
- Infection state adoptions: Calculation of adoption rate functions (per agent) + pairwise comparison of agents for adoptions that require contact

PDMM

- Movement: Evaluation of spatial transitions (frequency dependent on rates λ_i^(kl) N_i^(k))
- Infection state adoptions: Evaluation of ordinary differential equations

	ABM	PDMM
Complexity	superlinear, up to $\mathcal{O}(n_a^2)$	$\mathcal{O}(n_a)^*$
Spatial domain	continuous	discrete
Infection state dynamics	stochastic	deterministic

 $\mathcal{O}(n_a)^*$ can be replaced by $\mathcal{O}(1)$ under the assumption that spatial transitions are rare.

Spatial hybridization

$\textit{ABM} \rightarrow \textit{PDMM}$

 Trivial projection from agent to subpopulation N_i^(k) according to infection state *i* and position x ∈ Ω_k

$\textit{PDMM} \rightarrow \textit{ABM}$

- Infection state given by subpopulation index i
- Position in focus region has to be sampled from appropriate distribution

Algorithm 1: Spatial hybridization

- 1 Create ABM and PDMM for $\Omega = \bigcup_{k=1}^{n_R} \Omega_k$ and $t = t_0$;
- 2 Set and restrict rates and populations;
 - **a** ABM for Ω_1 ;
 - 4 PDMM for $\Omega_2, \ldots, \Omega_{n_R}$;
- **5 While** $t \in [t_0, t_{max}]$ **do**;
- **6** Define next synchronization point \hat{t} ;
- **7** Advance ABM and PDMM from t to \hat{t} ;
- 8 Exchange populations;
- 9 Set $t = \hat{t}$;

Application: Transmission model

ロ><
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

9

Application 1 - Quadwell potential

- Potential $F(x, y) = (x^2 1)^2 + (y^2 1)^2$
- Focus region $\Omega_1 = (-\infty, 0) \times (0, \infty)$
- Constant noise term $\sigma \in \mathbb{R}$

Quadwell potential - Simulation results

- 1% of population initially infected
- Transmission probability in Ω₂ is three times higher than in other regions

Quadwell potential - Runtime results

 Spatial-hybrid reduces runtime by 98% for 40,000 agents compared to ABM

Application 2 - Munich and surrounding counties

 Potential F given by map of city of Munich and its surrounding counties with Gaussian curve on borders

$$F(x) = egin{cases} 0, & ext{x is inside acounty} \ h, & ext{x is on a border} \ c \in (0, h), & ext{x is on gradient area next to the borders} \end{cases}$$

(1)

Munich potential - Introduction of commuting term

Adding commuting term to diffusion process:

$$\frac{dX(t)}{dt} = -\nabla F(t, X(t)) + \sigma(t, X(t))\xi(t) + K(t, X(t))$$

• For agent α a commuter, α -th element of K is

$$\mathcal{K}_{lpha}(t) = egin{cases} \pi(x_{lpha}) - x_{lpha}, & ext{if } t^{lpha}_d \in (t, t + \delta t] \lor t^{lpha}_r \in (t, t + \delta t] \ 0, & ext{else} \end{cases}$$

- t_d^{α} is time point agent α commutes
- t_r^{α} is time point agent α returns
- $\pi(x_{\alpha})$ is agent's new position in commuting destination region

Transitions to and from Munich City

Munich potential - Simulation results

- Transmission probability same in all regions
- Only in region next to Munich City initially infected (0.2%)

Munich potential - Runtime results

- Runtime gain less than for quadwell due to percentage of agents modeled with ABM (≈ 75% of agents located in focus region)
- ABM runtime comparably low for chosen setting, due to low number of infected agents
- Still 80% runtime gain for 90,000 agents

- In our simulations, hybridization saved up to 98% runtime
- Definition of exchange rules have essential impact on accuracy and performance of hybridization
- For spatial hybridization runtime gain depends on number of agents in focus region, relative to regions modeled with equations
- For temporal hybridization runtime gain depends on proportion of simulation time that ABM is used
- Next step: Using more advanced models for hybridization

 Github repository: https://github.com/SciCompMod/memilio.git, code for hybrid model on fork https://github.com/reneSchm/memilio

Thank you for your attention!

Preprint: Bicker, Schmieding, Kühn, Submitted, 2024, https://arxiv.org/abs/2406.04386

Appendix

Application - Single well potential

• Potential $F(x, y) = \frac{(x^4 + y^4)}{2}$

Setup:

- Only one initially infected
- Parameters chosen such that in 30% of all ABM simulations the virus dies out
- In non-extinction scenarios, NPI (reduction of transmission probability) after 20 days

Single well potential - Simulation results

Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03

22

Model		Extinction (seconds)					Survival (seconds)				
		min	mean			max		min	mean		max
ABM		80.9407	93.0124		112.658		93.1	817	446.238		2091.56
PDMM		-	-			- 00		040	0.00046		0.01000
Temporal-hybric	12	42.33	48.79		9	9.75	45.09		143.97		634.26
Temporal-hybric	15	42.31	4	49.37		2.76	46.02		147.47		655.27
Model			Combined (seconds)								
	ABM			min	r	iean	max				
-			80.9407 344		344	.297 2091.		1.56			
	PDMM Temporal-hybrid 2			0.00040		0.00	0.00046		0.01000		
				42.33		116.26		634.26			
Temporal-hybrid 5			4	2.31	12	0.05	65	5.27			