

HYBRID METAPOPULATION AGENT-BASED EPIDEMIOLOGICAL MODELS

Julia Bicker Predictive Simulation Software 2024/07/05 Joint work with René Schmieding, Martin Kühn and Michael Meyer-Hermann

DLR

Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03

Motivation

- Arbitrary level of detail
- Capture heterogenous contact behavior and mobility patterns
- Computational complexity is dependent on the number of agents

Equation-based models

- Aggregated results (on compartmental level)
- **Homogenous and well-mixed** population
- Runtime independent on population size

Hybridization approaches - Spatial hybridization

Motivation

- Interest in infection spread in a focus region
- Considering influence of connected regions on infection dynamics in focus region dynamically
- Exclusive availability of data in a focus region
- Reduction in computing time and energy demands

Concept

- Agent-based model in focus region
- Equation-based model for surrounding regions

Hybridization approaches - Temporal hybridization

Motivation

- Low case numbers: High stochasticity and individual behavior is important
- High case numbers: Individual behavior is less influential and simulation results are close to average
- Reduction in computing time and energy demands

Concept

- Agent-based model when case numbers are below a threshold
- Equation-based model when case numbers exceed threshold

Models - Agent-based model (ABM*)

- Agent $(x, z) \in \Omega \times \mathcal{Z}$
	- $\Omega \subset \mathbb{R}^2$ compact domain
	- $\mathcal{Z} = (z_1, z_2, \ldots, z_{n_l})$ set of infection states
- System state $Y := (X, Z) \in \Omega^{n_a} \times \mathcal{Z}^{n_a}$
- Infection state dynamics: Stochastic jump processes $\mathcal{P}_{ij}(t) := \mathcal{P}_{f^{(\alpha)}_j(Y(t))}$
- Movement: Diffusion process $\frac{dX(t)}{dt} = -\nabla F(t, X(t)) + \sigma(t, X(t))\xi(t)$
	- \blacksquare *F* : $\Omega \rightarrow \mathbb{R}$ a potential
	- $\sigma : [0, T] \times \mathbb{R}^2 \rightarrow \mathbb{R}^{2 \times m}$ a noise term
	- $\xi = \frac{\mathsf{d} \boldsymbol{W}}{\mathsf{d} t}$ the derivative of the Brownian motion in \mathbb{R}^m

Models - Piecewise-deterministic Metapopulation Model (PDMM*)

- Domain $Ω = \bigcup_{k=1}^{n_R} Ω_k$ split into n_R subregion $Ω_1, ..., Ω_{n_R}$
- System state $N = (N_i^{(k)})$ $\binom{k}{i}_{i\in\mathcal{Z},k=1,\dots,n_R}$ $\in\mathbb{R}_{\geq0}^{n_i\times m}$, with $N_i^{(k)}$ $I_i^{(N)}$ the number of agents in region Ω_k and compartment *i*
- Infection state dynamics: Ordinary differential equations $\frac{d}{dt}N_i^{(k)}$ $f_j^{(k)}(t) = \sum_{j \neq i} (f_{ji}^{(k)}(N) - f_{ij}^{(k)}(N))$
- Movement: Stochastic jump processes $\mathcal{L}^{(kl)}_i$ with rates $\lambda^{(kl)}_i \boldsymbol{\mathsf{N}}^{(k)}_i$ *i*

*Winkelmann, S., Zonker, J., Schütte, C., Conrad, N.D.: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading.

Mathematical Biosciences 336, 108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614

Computational costs

ABM

- **Movement:** Evaluation of diffusion process (per agent)
- **Infection state adoptions:** Calculation of adoption rate functions (per agent) + pairwise comparison of agents for adoptions that require contact

PDMM

- **Movement:** Evaluation of spatial transitions (frequency dependent on rates $\lambda_i^{(kl)} N_i^{(k)}$ *i*)
- **Infection state adoptions**: Evaluation of ordinary differential equations

 $\mathcal{O}(n_a)$ ^{*} can be replaced by $\mathcal{O}(1)$ under the assumption that spatial transitions are rare.

Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03 ⁷

Spatial hybridization

$ABM \rightarrow PDMM$

Trivial projection from agent to subpopulation $N_i^{(k)}$ *i* according to infection state *i* and position $x \in \Omega_k$

$PDMM \rightarrow ABM$

- Infection state given by subpopulation index *i*
- **Position in focus region has to be sampled from** appropriate distribution

Algorithm 1: Spatial hybridization

- 1 Create ABM and PDMM for $\Omega = \bigcup_{k=1}^{n_R} \Omega_k$ and $t = t_0$;
- 2 Set and restrict rates and populations:
- ABM for Ω_1 ; \mathbf{a}
- PDMM for $\Omega_2, \ldots, \Omega_{n_B}$;
- 5 While $t \in [t_0, t_{max}]$ do;
- Define next synchronization point \hat{t} ;
- Advance ABM and PDMM from t to \hat{t} ;
- Exchange populations;
- Set $t = \hat{t}$:

Application: Transmission model

Application 1 - Quadwell potential

- Potential $F(x, y) = (x^2 1)^2 + (y^2 1)^2$
- Focus region $\Omega_1 = (-\infty, 0) \times (0, \infty)$
- **Constant noise term** $\sigma \in \mathbb{R}$

- \blacksquare 1% of population initially infected
- **■** Transmission probability in $Ω₂$ is three times higher than in other regions

Spatial-hybrid reduces runtime by 98% for 40; 000 agents compared to ABM

Quadwell potential - Runtime results

Application 2 - Munich and surrounding counties

Potential F given by map of city of Munich and its surrounding counties with Gaussian curve on borders

$$
F(x) = \begin{cases} 0, & x \text{ is inside acounty} \\ h, & x \text{ is on a border} \\ c \in (0, h), & x \text{ is on gradient area next to the borders} \end{cases}
$$

13 Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03

(1)

Munich potential - Introduction of commuting term

■ Adding commuting term to diffusion process:

$$
\frac{dX(t)}{dt}=-\nabla F(t,X(t))+\sigma(t,X(t))\xi(t)+K(t,X(t))
$$

For agent α a commuter, α -th element of *K* is

$$
K_{\alpha}(t) = \begin{cases} \pi(x_{\alpha}) - x_{\alpha}, & \text{if } t_{\alpha}^{\alpha} \in (t, t + \delta t] \vee t_{r}^{\alpha} \in (t, t + \delta t] \\ 0, & \text{else} \end{cases}
$$

- t_d^α is time point agent α commutes
- t_r^{α} is time point agent α returns
- $\pi(x_\alpha)$ is agent's new position in commuting destination region

Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03 ¹⁴

Transitions to and from Munich City

つへへ

Munich potential - Simulation results

- **Transmission probability same in all regions**
- \blacksquare Only in region next to Munich City initially infected (0.2%)

Munich potential - Runtime results

- Runtime gain less than for quadwell due to percentage of agents modeled with ABM (\approx 75% of agents located in focus region)
- ABM runtime comparably low for chosen setting, due to low number of infected agents
- Still 80% runtime gain for 90,000 agents

- \blacksquare In our simulations, hybridization saved up to 98% runtime
- Definition of exchange rules have essential impact on accuracy and performance of hybridization
- For spatial hybridization runtime gain depends on number of agents in focus region, relative to regions modeled with equations
- For temporal hybridization runtime gain depends on proportion of simulation time that ABM is used
- Next step: Using more advanced models for hybridization

Github repository: https://github.com/SciCompMod/memilio.git, code for hybrid model on fork https://github.com/reneSchm/memilio

Thank you for your attention!

■ Preprint: Bicker, Schmieding, Kühn, Submitted, 2024, https://arxiv.org/abs/2406.04386

Appendix

Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03 ²⁰

K ロト K 押 ト K 用 ト の Q Q+

Application - Single well potential

Setup:

- Only one initially infected
- Parameters chosen such that in 30% of all ABM simulations the virus dies out
- In non-extinction scenarios, NPI (reduction of transmission probability) after 20 days

Single well potential - Simulation results

DLR

22 Julia Bicker, Institute for Software Technology, Department of High-Performance Computing: Hybrid metapopulation agent-based epidemiological models, 2023/06/03

つへへ

